4.3 Article

Short-chain fatty acids augment rat duodenal mucosal barrier function

期刊

EXPERIMENTAL PHYSIOLOGY
卷 102, 期 7, 页码 791-803

出版社

WILEY
DOI: 10.1113/EP086110

关键词

barrier function; gastrointestinal tract; in vivo; motility

资金

  1. Emil and Ragna Borjesson Foundation
  2. Uppsala University
  3. Ministry of Education of Malaysia
  4. University Malaysia Sabah

向作者/读者索取更多资源

New Findings What is the central question of this study? Small intestinal epithelium is exposed to high concentrations of short-chain fatty acids (SCFAs), but their role in regulating intestinal mucosal barrier function and motility is not fully understood. What is the main finding and its importance? By perfusing the duodenal segment in anaesthetized rats, we show that acetate and propionate significantly decrease mucosal paracellular permeability and transepithelial net fluid flux and increase mucosal bicarbonate secretion. Likewise, SCFAs administered I.V. decrease mucosal permeability but decrease bicarbonate secretion. Altered luminal chemosensing or aberrant signalling in response to SCFAs might contribute to symptoms observed in patients with suppressed mucosal barrier function. Short-chain fatty acids (SCFAs) are produced by bacterial fermentation in the large intestine, particularly from diets containing fibres and carbohydrates. The small intestinal epithelium is exposed to SCFAs derived mainly from oral bacteria or food supplementation. Although luminal nutrients are important in regulation of intestinal functions, the role of SCFAs in regulation of small intestinal mucosal barrier function and motility has not been fully described. The aim of the present study was to elucidate the effects of acetate and propionate on duodenal mucosal barrier function and motility. Rats were anaesthetized with thiobarbiturate, and a 30 mm segment of proximal duodenum with an intact blood supply was perfused. The effects on duodenal bicarbonate secretion, blood-to-lumen clearance of Cr-51-EDTA, motility and transepithelial net fluid flux were investigated. Perfusion of the duodenum with acetate or propionate significantly decreased mucosal paracellular permeability and transepithelial net fluid flux and significantly increased bicarbonate secretion. Acetate or propionate administered as an I.V. infusion decreased the mucosal paracellular permeability, but significantly decreased bicarbonate secretion. Luminal SCFAs changed the duodenal motility pattern from migrating motor complexes to fed patterns. Systemic administration of glucagon-like peptide-2 induced increases in both bicarbonate secretion and net fluid absorption, but did not change motility. Glucagon-like peptide-2 infusion during luminal perfusion of SCFAs significantly reduced the motility. In conclusion, SCFAs decreased duodenal paracellular permeability and net fluid flux. Short-chain fatty acids induced opposite effects on bicarbonate secretion after luminal and i.v. administration. Presence of SCFAs in the lumen induces fed motility patterns. Altered luminal chemosensing and aberrant signalling in response to SCFAs might contribute to symptoms observed in patients with suppressed barrier function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据