4.5 Article

The subthalamic nucleus-external globus pallidus loop biases exploratory decisions towards known alternatives: a neuro-computational study

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 49, 期 6, 页码 754-767

出版社

WILEY
DOI: 10.1111/ejn.13666

关键词

associative learning; basal ganglia; behaviour; computational model; relearning

资金

  1. German Research Foundation [DFG HA2630/8-1]
  2. Strategic International Research Cooperative Program [ESF-100269974]
  3. Japan Science and Technology Agency (JST) [26250009]
  4. Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [15H05873]
  5. Grants-in-Aid for Scientific Research [15H05873, 26250009, 15K21731, 15H05871] Funding Source: KAKEN

向作者/读者索取更多资源

Theories and models of the basal ganglia have mainly focused on the role of three different corticothalamic pathways: direct, indirect and hyperdirect. Although the indirect and the hyperdirect pathways are linked through the bidirectional connections between the subthalamic nucleus (STN) and the external globus pallidus (GPe), the role of their interactions has been mainly discussed in the context of a dysfunction (abnormal oscillations in Parkinson's disease) and not of its function. We here propose a novel role for the loop formed by the STN and the GPe. We show, through a neuro-computational model, that this loop can bias the selection of actions during the exploratory period after a change in the environmental conditions towards alternative responses. Testing well-known alternative solutions before completely random actions can reduce the time required for the search of a new response after a rule change. Our simulations further show that the knowledge acquired by the indirect pathway can be transferred into a stable memory via learning in the hyperdirect pathway to establish the blocking of unwanted responses. After a rule switch, first the indirect pathway learns to inhibit the previously correct actions. Once the new correct association is learned, the inhibition is transferred to the hyperdirect pathway through synaptic plasticity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据