4.7 Article

Determination of carbamazepine and 12 degradation products in various compartments of an outdoor aquatic mesocosm by reliable analytical methods based on liquid chromatography-tandem mass spectrometry

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 24, 期 20, 页码 16893-16904

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-017-9297-6

关键词

Carbamazepine; Mesocosm; Bioaccumulation; Metabolites; Sediment; Zebra mussel; Stickleback; Fresh water

资金

  1. ANSM (Agence Nationale de Securite du Medicament et des produits de sante)

向作者/读者索取更多资源

The aims of this work are to develop suitable analytical methods to determine the widely used anticonvulsant carbamazepine and 12 of its degradation/transformation products in water, sediment, fish (Gasterosteus aculeatus) and mollusc (Dreissena polymorpha). Protocols based on solid phase extraction for water, pressurized-liquid extraction for sediments and QuEChERS (quick easy cheap efficient rugged and safe) extraction for both organisms followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) are developed, validated and finally applied to samples collected during a 6-month experiment in outdoor mesocosms. Very low detection limits are reached, allowing environmentally realistic doses (namely, 0.05, 0.5 and 5 mu g/L nominal concentrations) to be employed. The results indicate several metabolites and/or transformation products in each compartment investigated, with concentrations sometimes being greater than that of the parent carbamazepine. Biotic degradation of carbamazepine is demonstrated in water, leading to 10,11-dihydrocarbamazepine and 10,11-epoxycarbamazepine. In sediment, the degradation results in the formation of acridine, and 2- and 3-hydroxycarbamazepine. Finally, in both organisms, a moderate bioaccumulation is observed together with a metabolization leading to 10,11-epoxycarbamazepine in fish and 2-hydroxycarbamazepine in mollusc. Acridone is also present in fish. This study provides new and interesting data, helping to elucidate how chronic exposure to carbamazepine at relevant concentrations may affect impact freshwater ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据