4.8 Article

Influence of Electric Fields on Biofouling of Carbonaceous Electrodes

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 51, 期 17, 页码 10022-10030

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.6b06339

关键词

-

资金

  1. United States Israel Binational Science Foundation [2012142]
  2. Planning and Budgeting Committee (PBC) of the Council for Higher Education
  3. Div Of Chem, Bioeng, Env, & Transp Sys
  4. Directorate For Engineering [1403826] Funding Source: National Science Foundation

向作者/读者索取更多资源

Biofouling commonly occurs on carbonaceous capacitive deionization electrodes in the process of treating natural waters. Although previous work reported the effect of electric fields on bacterial mortality for a variety of medical and engineered applications, the effect of electrode surface properties and the magnitude and polarity of applied electric fields on biofilm development has not been comprehensively investigated. This paper studies the formation of a Pseudomonas aeruginosa biofilm on a Papyex graphite (PA) and a carbon aerogel (CA) in the presence and the absence of an electric field. The experiments were conducted using a two-electrode flow cell with a voltage window of +/- 0.9 V. The CA was less susceptible to biofilm formation compared to the PA due to its lower surface roughness, lower hydrophobicity, and significant antimicrobial properties. For both positive and negative applied potentials, we observed an inverse relationship between biofilm formation and the magnitude of the applied potential. The effect is particularly strong for the CA electrodes and may be a result of cumulative effects between material toxicity and the stress experienced by cells at high applied potentials. Under the applied potentials for both electrodes, high production of endogenous reactive oxygen species (ROS) was indicative of bacterial stress. For both electrodes, the elevated specific ROS activity was lowest for the open circuit potential condition, elevated when cathodically and anodically polarized, and highest for the +/- 0.9 V cases. These high applied potentials are believed to affect the redox potential across the cell membrane and disrupt redox homeostasis, thereby inhibiting bacterial growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据