4.8 Article

Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 51, 期 15, 页码 8491-8500

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b00160

关键词

-

资金

  1. DOE (BER/ASR) [DE-SC0016559, DE-SC0011105]
  2. DOE SBIR [DE-SC0011218]
  3. EPA STAR [83587701-0]
  4. EPRI [10004734, 10007056]
  5. NSF [AGS-1360834]
  6. EPA [FP-91770901-0, FP-91761701-0]
  7. CIRES
  8. Universite de Montreal
  9. U.S. Department of Energy (DOE) [DE-SC0011218] Funding Source: U.S. Department of Energy (DOE)
  10. Directorate For Geosciences
  11. Div Atmospheric & Geospace Sciences [1360834] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at fbrested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO CIMS, with similar to 20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Environmental

Molecular Understanding of the Enhancement in Organic Aerosol Mass at High Relative Humidity

Mihnea Surdu, Houssni Lamkaddam, Dongyu S. Wang, David M. Bell, Mao Xiao, Chuan Ping Lee, Dandan Li, Lucia Caudillo, Guillaume Marie, Wiebke Scholz, Mingyi Wang, Brandon Lopez, Ana A. . Piedehierro, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Pia Bogert, Zoe Brasseur, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Xu-Cheng He, Kristina Hohler, Kimmo Korhonen, Jordan E. Krechmer, Katrianne Lehtipalo, Naser G. A. . Mahfouz, Hanna E. Manninen, Ruby Marten, Dario Massabo, Roy Mauldin, Tuukka Petaja, Joschka Pfeifer, Maxim Philippov, Birte Rorup, Mario Simon, Jiali Shen, Nsikanabasi Silas Umo, Franziska Vogel, Stefan K. . Weber, Marcel Zauner-Wieczorek, Rainer Volkamer, Harald Saathoff, Ottmar Moehler, Jasper Kirkby, Douglas R. Worsnop, Markku Kulmala, Frank Stratmann, Armin Hansel, Joachim Curtius, Andre Welti, Matthieu Riva, Neil M. Donahue, Urs Baltensperger, Imad El Haddad

Summary: This study investigates the effect of high relative humidity (RH) on the gas-particle partitioning of biogenic oxidized organic molecules at low temperatures. The results demonstrate that high RH increases the partitioning of semivolatile compounds and leads to a shift in the chemical composition and volatility distribution of organic aerosols towards less oxygenated and more volatile species.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Engineering, Environmental

Model Evaluation of Secondary Chemistry due to Disinfection of Indoor Air with Germicidal Ultraviolet Lamps

Zhe Peng, Shelly L. Miller, Jose L. Jimenez

Summary: Air disinfection using germicidal ultraviolet light (GUV) has gained attention during the COVID-19 pandemic. This study investigates the impact of GUV on indoor-air-quality by modeling the chemistry initiated by GUV in a typical indoor setting. The analysis shows that GUV can photolyze ozone (O3) and generate hydroxyl radicals (OH) that oxidize indoor volatile organic compounds (VOCs) into more oxidized VOCs. GUV also leads to the formation of secondary organic aerosol (SOA).

ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS (2023)

Article Meteorology & Atmospheric Sciences

Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ)

Carsten Warneke, Joshua P. Schwarz, Jack Dibb, Olga Kalashnikova, Gregory Frost, Jassim Al-Saad, Steven S. Brown, Wm Alan Brewer, Amber Soja, Felix C. Seidel, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Richard H. Moore, Bruce E. Anderson, Carolyn Jordan, Tara Yacovitch, Scott C. Herndon, Shang Liu, Toshihiro Kuwayama, Daniel Jaffe, Nancy Johnston, Vanessa Selimovic, Robert Yokelson, David M. Giles, Brent N. Holben, Philippe Goloub, Ioana Popovici, Michael Trainer, Aditya Kumar, R. Bradley Pierce, David Fahey, James Roberts, Emily M. Gargulinski, David A. Peterson, Xinxin Ye, Laura H. Thapa, Pablo E. Saide, Charles H. Fite, Christopher D. Holmes, Siyuan Wang, Matthew M. Coggon, Zachary C. J. Decker, Chelsea E. Stockwell, Lu Xu, Georgios Gkatzelis, Kenneth Aikin, Barry Lefer, Jackson Kaspari, Debora Griffin, Linghan Zeng, Rodney Weber, Meredith Hastings, Jiajue Chai, Glenn M. Wolfe, Thomas F. Hanisco, Jin Liao, Pedro Campuzano Jost, Hongyu Guo, Jose L. Jimenez, James Crawford

Summary: The NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) experiment aimed to study the impact of fires on regional and global environments and air quality. The experiment measured trace gas and aerosol emissions, observed fire dynamics, assessed fire modeling, and examined connections to ground and satellite observables. The experiment involved aircraft, satellites, mobile laboratories, and ground sites.

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES (2023)

Article Engineering, Environmental

Chemical Signatures of Seasonally Unique Anthropogenic Influences on Organic Aerosol Composition in the Central Amazon

Emily B. Franklin, Lindsay D. Yee, Rebecca Wernis, Gabriel Isaacman-VanWertz, Nathan Kreisberg, Robert Weber, Haofei Zhang, Brett B. Palm, Weiwei Hu, Pedro Campuzano-Jost, Douglas A. Day, Antonio Manzi, Paulo Artaxo, Rodrigo A. F. De Souza, Jose L. Jimenez, Scot T. Martin, Allen H. Goldstein

Summary: Urbanization and fires have a significant impact on the quantities and composition of organic aerosol in the central Amazon, affecting radiative forcing and public health. The composition of ambient organic aerosol is complex and not fully understood, with limited knowledge about the different compounds present. Through analysis of aerosol samples, it was found that fires and urban emissions have distinct effects on the chemical signatures, and only a portion of compounds were observed in both seasons. This study highlights the need for further research to fill the knowledge gaps in understanding the speciation of organic aerosol in the Amazon.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Engineering, Environmental

Molecular Characterization of Oxygenated Organic Molecules and Their Dominating Roles in Particle Growth in Hong Kong

Penggang Zheng, Yi Chen, Zhe Wang, Yuliang Liu, Wei Pu, Chuan Yu, Men Xia, Yang Xu, Jia Guo, Yishuo Guo, Linhui Tian, Xiaohui Qiao, Dan Dan Huang, Chao Yan, Wei Nie, Douglas R. Worsnop, Shuncheng Lee, Tao Wang

Summary: This study conducted ambient measurements of OOMs at a regional background site in South China. It revealed that nitrogen-containing products were dominant, and different factors influenced the composition and oxidation state of OOMs. The results demonstrated the significant role of OOMs in sub-100 nm particle growth and SOA formation.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Geosciences, Multidisciplinary

Stratospheric Gas-Phase Production Alone Cannot Explain Observations of Atmospheric Perchlorate on Earth

Yuk-Chun Chan, Lyatt Jaegle, Pedro Campuzano-Jost, David C. Catling, Jihong Cole-Dai, Vasile I. Furdui, W. Andrew Jackson, Jose L. Jimenez, Dongwook Kim, Alanna E. Wedum, Becky Alexander

Summary: In this study, a global three-dimensional chemical transport model was used to simulate the production, transport, and deposition of perchlorate in the Earth's atmosphere. The model predictions were compared to observations, and it was found that the model could not fully explain the high levels of perchlorate observed at near-surface sites and the low O-17-excess observed in perchlorate sampled from pristine environments. Four hypotheses were discussed to explain these discrepancies and recommendations were made for further laboratory and field observations.

GEOPHYSICAL RESEARCH LETTERS (2023)

Article Multidisciplinary Sciences

Pyrocumulonimbus affect average stratospheric aerosol composition

J. M. Katich, E. C. Apel, I. Bourgeois, C. A. Brock, T. P. Bui, P. Campuzano-Jost, R. Commane, B. Daube, M. Dollner, M. Fromm, K. D. Froyd, A. J. Hills, R. S. Hornbrook, J. L. Jimenez, A. Kupc, K. D. Lamb, K. McKain, F. Moore, D. M. Murphy, B. A. Nault, J. Peischl, A. E. Perring, D. A. Peterson, E. A. Ray, K. H. Rosenlof, T. Ryerson, G. P. Schill, J. C. Schroder, B. Weinzierl, C. Thompson, C. J. Williamson, S. C. Wofsy, P. Yu, J. P. Schwarz

Summary: Pyrocumulonimbus (pyroCb) are wildfire-generated convective clouds that can inject smoke directly into the stratosphere. In situ measurements of pyroCb smoke reveal its distinctive and exceptionally stable aerosol properties and define the long-term influence of pyroCb activity on the stratospheric aerosol budget. Analysis of 13 years of airborne observations shows that pyroCb are responsible for 10 to 25% of the black carbon and organic aerosols in the present-day lower stratosphere, with similar impacts in both the North and South Hemispheres. These results suggest that, should pyroCb increase in frequency and/or magnitude in future climates, they could generate dominant trends in stratospheric aerosol.

SCIENCE (2023)

Article Engineering, Environmental

Impact of Biomass Burning Organic Aerosol Volatility on Smoke Concentrations Downwind of Fires

Demetrios Pagonis, Vanessa Selimovic, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Benjamin A. Nault, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Edward C. Fortner, Emily M. Gargulinski, Georgios I. Gkatzelis, Johnathan W. Hair, Scott C. Herndon, Christopher D. Holmes, Joseph M. Katich, John B. Nowak, Anne E. Perring, Pablo Saide, Taylor J. Shingler, Amber J. Soja, Laura H. Thapa, Carsten Warneke, Elizabeth B. Wiggins, Armin Wisthaler, Tara I. Yacovitch, Robert J. Yokelson, Jose L. Jimenez

Summary: Biomass burning particulate matter (BBPM) has significant impacts on air quality and climate, and this impact is expected to increase in the future. Studies have shown that the concentration of BBPM from North American fires is dependent on altitude, with airborne and high-altitude measurements showing a doubling of BBPM compared to ground-based measurements. The volatility of BBPM partially explains the observed differences in concentration across platforms.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Environmental Sciences

Evolution of organic carbon in the laboratory oxidation of biomass-burningemissions

Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, Jesse H. Kroll

Summary: Biomass burning is a significant source of reactive organic carbon in the atmosphere. Experiments conducted as part of the FIREX FireLab campaign reveal that the atmospheric oxidation of organic carbon from biomass burning leads to the formation of smaller and more oxidized species. The oxidative evolution of biomass burning emissions appears to be independent of fuel type, resulting in a common aged distribution of gas-phase compounds consisting of small volatile oxygenates and various minor oxidized species and secondary organic aerosols.

ATMOSPHERIC CHEMISTRY AND PHYSICS (2023)

Article Environmental Sciences

Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties

Haihui Zhu, Randall V. Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey R. Pierce, Rachel Y. -W. Chang, Bruce E. Anderson, Luke D. Ziemba, Johnathan W. Hair, Richard A. Ferrare, Chris A. Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jack E. Dibb, Joshua S. Schwarz, Andrew Weinheimer

Summary: This study uses a global chemical transport model to analyze airborne measurements from the United States and South Korea, and proposes a parameterization method for representing aerosol size. This method improves the agreement between the simulation model and ground-measured data.

ATMOSPHERIC CHEMISTRY AND PHYSICS (2023)

Article Environmental Sciences

An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles

Lucia Caudillo, Mihnea Surdu, Brandon Lopez, Mingyi Wang, Markus Thoma, Steffen Brakling, Angela Buchholz, Mario Simon, Andrea C. Wagner, Tatjana Mueller, Manuel Granzin, Martin Heinritzi, Antonio Amorim, David M. Bell, Zoe Brasseur, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Xu-Cheng He, Houssni Lamkaddam, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Roy L. Mauldin, Bernhard Mentler, Antti Onnela, Tuukka Petaja, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Birte Rorup, Wiebke Scholz, Jiali Shen, Dominik Stolzenburg, Christian Tauber, Ping Tian, Antonio Tome, Nsikanabasi Silas Umo, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, Andre Welti, Marcel Zauner-Wieczorek, Urs Baltensperger, Richard C. Flagan, Armin Hansel, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Douglas R. Worsnop, Imad El Haddad, Neil M. Donahue, Alexander L. Vogel, Andreas Kuerten, Joachim Curtius

Summary: The complete chemical characterization of nanoparticles is challenging due to their abundance but negligible mass. This study compares different techniques for the chemical composition analysis of secondary organic aerosol nanoparticles. The experiments were conducted at the CLOUD chamber, and simultaneous measurements were performed using four different techniques. The results generally agree on the important compounds found in the nanoparticles, but each technique captures different parts of the organic spectrum, potentially due to factors such as thermal decomposition or sampling artifacts.

ATMOSPHERIC CHEMISTRY AND PHYSICS (2023)

Article Environmental Sciences

Chemical identification of new particle formation and growth precursorsthrough positive matrix factorization of ambient ion measurements

Daniel John Katz, Aroob Abdelhamid, Harald Stark, Manjula R. Canagaratna, Douglas R. Worsnop, Eleanor C. Browne

Summary: Measurements of ambient ion chemical composition provide direct insight into the most acidic and basic trace gases and their ion-molecule clusters. The use of the atmospheric pressure interface time-of-flight mass spectrometer (APi-ToF) combined with binPMF analysis allows for the temporal evolution of compounds important for new particle formation and growth to be studied. The results showed that negative ions consist of strong acids, organosulfates, and clusters derived from monoterpene and sesquiterpene oxidation, while positive ions consist of alkyl pyridines and amines.

ATMOSPHERIC CHEMISTRY AND PHYSICS (2023)

Article Environmental Sciences

A combined gas- and particle-phase analysis of highly oxygenated organic molecules (HOMs) from α-pinene ozonolysis

Jian Zhao, Ella Hakkinen, Frans Graeffe, Jordan E. Krechmer, Manjula R. Canagaratna, Douglas R. Worsnop, Juha Kangasluoma, Mikael Ehn

Summary: Highly oxygenated organic molecules (HOMs) are crucial for the formation of secondary organic aerosol (SOA), but the lack of suitable analytical techniques has limited our understanding of particle-phase HOM speciation and its relationship with gas-phase HOM formation. This study used a novel VIA-NO3-CIMS system to investigate the gas- and particle-phase HOM products of a-pinene ozonolysis. The results showed that gas-phase dimer formation was suppressed with the addition of CO or NO, but particle-phase dimers still constituted a considerable fraction of the observed SOA. Overall, the VIA-NO3-CIMS system showed promise for combined online gas- and particle-phase HOM measurements.

ATMOSPHERIC CHEMISTRY AND PHYSICS (2023)

Article Environmental Sciences

Measurement report: Emission factors of NH3 and NHx for wildfires and agricultural fires in the United States

Laura Tomsche, Felix Piel, Tomas Mikoviny, Claus J. Nielsen, Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Melinda K. Schueneman, Jose L. Jimenez, Hannah Halliday, Glenn Diskin, Joshua P. DiGangi, John B. Nowak, Elizabeth B. Wiggins, Emily Gargulinski, Amber J. Soja, Armin Wisthaler

Summary: During the 2019 FIREX-AQ study, the NASA DC-8 conducted in situ chemical measurements on smoke plumes from wildfires and agricultural fires in the United States. The study found high levels of ammonia and particulate ammonium in the smoke plumes, with variations depending on the type of fire and region.

ATMOSPHERIC CHEMISTRY AND PHYSICS (2023)

暂无数据