4.6 Article

An improved approach for evaluating the time-dependent stability of colluvial landslides during intense rainfall

期刊

ENVIRONMENTAL EARTH SCIENCES
卷 76, 期 8, 页码 -

出版社

SPRINGER
DOI: 10.1007/s12665-017-6639-0

关键词

Landslides; Time-dependent stability; Rainfall infiltration; Green-Ampt model; Shear strength criterion

资金

  1. Key Program of National Science Foundation of China [41230637]
  2. National Program on Key Basic Research Project of China (973 Program) [2011CB710600]

向作者/读者索取更多资源

The paper presents an improved analytical approach for evaluating the time-dependent stability of colluvial landslides during intense rainfall infiltration. The approach comprises two steps: first to simulate rainfall infiltration and then to compute the safety factor. In terms of the irregularity of the natural landslide surface in implementation of the method, the landslide is divided into several soil slices with approximately straight sides. Each single slice is regarded as a finite slope so that the infiltration formula and safety factor can be deduced. The infiltration formula is derived with combination of the Green-Ampt model and mass conservation law considering seepage perpendicular and parallel to slope surface simultaneously. In the modified infiltration model, both size effect and angle effect are vividly observed in the process of rainfall infiltration into the finite slope, while the former of which is not presented in the original Green-Ampt model. The safety factor is computed using the limit equilibrium method, with the influence of infiltrating water on the shear strength, gravity and seepage force of soil slices considered. By case study of the Shuping landslide in Three Gorges, decline in the safety factor and the decrease in the tendency are definite. Specifically under the rainfall intensity of 50 mm/h, the failure of Shuping landslide is most likely to occur at the time of 102 h. In addition, the results highlight shallow failure along the wetting front under intense rainfall.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据