4.7 Article

Particle-Fluid-Structure Interaction for Debris Flow Impact on Flexible Barriers

期刊

出版社

WILEY
DOI: 10.1111/mice.12165

关键词

-

资金

  1. European research network MUMOLADE (Multiscale Modelling of Landslides and Debris Flow)
  2. ETH Zurich by ETHIIRA grant [ETH-03 10-3]
  3. European Research Council [319968-FlowCCS]

向作者/读者索取更多资源

Flexible barriers are increasingly used for the protection from debris flow in mountainous terrain due to their low cost and environmental impact. However, the development of a numerical tool for the rational design of such structures is still a challenge. In this work, a hybrid computational framework is presented, using a total Lagrangian formulation of the finite element method to represent a flexible barrier. The actions exerted on the structure by a debris flow are obtained from simultaneous simulations of the flow of a fluid-grain mixture, using two conveniently coupled solvers: the discrete element method governs the motion of the grains, while the free-surface non-Newtonian fluid phase is solved using the lattice Boltzmann method. Simulations on realistic geometries show the dependence of the momentum transfer on the barrier on the composition of the debris flow, challenging typical assumptions made during the design process today. In particular, we demonstrate that both grains and fluid contribute in a nonnegligible way to the momentum transfer. Moreover, we show how the flexibility of the barrier reduces its vulnerability to structural collapse, and how the stress is distributed on its fabric, highlighting potential weak points.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据