4.7 Article

CNT-Based Artificial Hair Sensors for Predictable Boundary Layer Air Flow Sensing

期刊

ADVANCED MATERIALS TECHNOLOGIES
卷 1, 期 9, 页码 -

出版社

WILEY
DOI: 10.1002/admt.201600176

关键词

-

资金

  1. Air Force Office of Scientific Research (AFOSR)

向作者/读者索取更多资源

While numerous flow sensor architectures mimic the natural cilia of crickets, locusts, bats, and fish, the prediction of sensor output for given flow conditions based on the sensor properties has not been achieved. Challenges include difficulty in determining the electromechanical properties of the sensors, limited working knowledge of the boundary layer, low sensitivity to small hair deflections, and lack of models for large deflections. Within this work, hair sensors are fabricated using piezoresistive arrays of carbon nanotubes (CNTs) without traditional microelectromechanical processing. While correlating the CNT array electromechanical properties to synthesis conditions remains a challenge, a consistent, proportional, and predictable response to steady, boundary-determined air flow is obtained using theory and measurement for various lengths of hairs. The moment sensitivity is shown to scale inversely with the CNT length and stiffness to a typical maximum of 1.3 +/- 0.4% resistance change nN(-1) m(-1). The normalized CNT piezoresistivity is constant (1.1 +/- 0.2) for a majority of the more than two dozen sensors examined despite the orders-of-magnitude variability in both sensitivity and CNT compressive modulus. The sensor sensitivity and noise both distinctly change as the flow transitions from steady and laminar to turbulent, suggesting the sensor may be capable of detecting flow transitions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据