4.7 Article

Zonal Soil Type Determines Soil Microbial Responses to Maize Cropping and Fertilization

期刊

MSYSTEMS
卷 1, 期 4, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mSystems.00075-16

关键词

-

资金

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15010102]
  2. Major Science and Technology Program for Water Pollution Control and Treatment [2013ZX07315-001-03]
  3. National Science Foundation of China [41471202, 41271258, 41430856]
  4. Chinese Academy of Sciences [XDB15030200, KFJ-SW-STS-142]
  5. Collaborative Innovation Center for Regional Environmental Quality at Tsinghua University

向作者/读者索取更多资源

Soil types heavily influence ecological dynamics. It remains controversial to what extent soil types shape microbial responses to land management changes, largely due to lack of in-depth comparison across various soil types. Here, we collected samples from three major zonal soil types spanning from cold temperate to subtropical climate zones. We examined bacterial and fungal community structures, as well as microbial functional genes. Different soil types had distinct microbial biomass levels and community compositions. Five years of maize cropping (growing corn or maize) changed the bacterial community composition of the Ultisol soil type and the fungal composition of the Mollisol soil type but had little effect on the microbial composition of the Inceptisol soil type. Meanwhile, 5 years of fertilization resulted in soil acidification. Microbial compositions of the Mollisol and Ultisol, but not the Inceptisol, were changed and correlated (P < 0.05) with soil pH. These results demonstrated the critical role of soil type in determining microbial responses to land management changes. We also found that soil nitrification potentials correlated with the total abundance of nitrifiers and that soil heterotrophic respiration correlated with the total abundance of carbon degradation genes, suggesting that changes in microbial community structure had altered ecosystem processes. IMPORTANCE Microbial communities are essential drivers of soil functional processes such as nitrification and heterotrophic respiration. Although there is initial evidence revealing the importance of soil type in shaping microbial communities, there has been no in-depth, comprehensive survey to robustly establish it as a major determinant of microbial community composition, functional gene structure, or ecosystem functioning. We examined bacterial and fungal community structures using Illumina sequencing, microbial functional genes using GeoChip, microbial biomass using phospholipid fatty acid analysis, as well as functional processes of soil nitrification potential and CO2 efflux. We demonstrated the critical role of soil type in determining microbial responses to land use changes at the continental level. Our findings underscore the inherent difficulty in generalizing ecosystem responses across landscapes and suggest that assessments of community feedback must take soil types into consideration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据