4.7 Article

Characterization of time-varying macroscopic electro-chemo-mechanical behavior of SOFC subjected to Ni-sintering in cermet microstructures

期刊

COMPUTATIONAL MECHANICS
卷 56, 期 4, 页码 653-676

出版社

SPRINGER
DOI: 10.1007/s00466-015-1193-7

关键词

Solid oxide fuel cell (SOFC); Electrochemical potential; Sintering of Ni; Phase-field method; Homogenization method

资金

  1. New Energy and Industrial Technology Development Organization (NEDO), Japan

向作者/读者索取更多资源

In order to perform stress analyses of a solid oxide fuel cell (SOFC) under operation, we propose a characterization method of its time-varying macroscopic electro-chemo-mechanical behavior of electrodes by considering the time-varying geometries of anode microstructures due to Ni-sintering. The phase-field method is employed to simulate the micro-scale morphology change with time, from which the time-variation of the amount of triple-phase boundaries is directly predicted. Then, to evaluate the time-variation of the macroscopic oxygen ionic and electronic conductivities and the inelastic properties of the anode electrode, numerical material tests based on the homogenization method are conducted for each state of sintered microstructures. In these homogenization analyses, we also have to consider the dependencies of the properties of constituent materials on the temperature and/or the oxygen potential that is supposed to change within an operation period. To predict the oxygen potential distribution in an overall SOFC structure under long-period operation, which determines reduction-induced expansive/contractive deformation of oxide materials, an unsteady problem of macroscopic oxygen ionic and electronic conductions is solved. Using the calculated stress-free strains and the homogenized mechanical properties, both of which depend on the operational environment, we carry out the macroscopic stress analysis of the SOFC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据