4.3 Article

Methods matter: considering locomotory mode and respirometry technique when estimating metabolic rates of fishes

期刊

CONSERVATION PHYSIOLOGY
卷 4, 期 -, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/conphys/cow008

关键词

Body-caudal fin swimming; carangiform; circular swimming chamber; labriform; median-paired fin swimming; oxygen consumption rate

资金

  1. Australian Research Council
  2. Australian Research Council Centre of Excellence for Coral Reef Studies
  3. Australian National University
  4. Natural Sciences and Engineering Research Council of Canada
  5. Total Diving in Montreal
  6. Ian Potter Doctoral Fellowship at Lizard Island (a facility of the Australian Museum)

向作者/读者索取更多资源

Respirometry is frequently used to estimate metabolic rates and examine organismal responses to environmental change. Although a range of methodologies exists, it remains unclear whether differences in chamber design and exercise (type and duration) produce comparable results within individuals and whether the most appropriate method differs across taxa. We used a repeated-measures design to compare estimates of maximal and standard metabolic rates (MMR and SMR) in four coral reef fish species using the following three methods: (i) prolonged swimming in a traditional swimming respirometer; (ii) short-duration exhaustive chase with air exposure followed by resting respirometry; and (iii) short-duration exhaustive swimming in a circular chamber. We chose species that are steady/prolonged swimmers, using either a body-caudal fin or a median-paired fin swimming mode during routine swimming. Individual MMR estimates differed significantly depending on the method used. Swimming respirometry consistently provided the best (i.e. highest) estimate of MMR in all four species irrespective of swimming mode. Both short-duration protocols (exhaustive chase and swimming in a circular chamber) produced similar MMR estimates, which were up to 38% lower than those obtained during prolonged swimming. Furthermore, underestimates were not consistent across swimming modes or species, indicating that a general correction factor cannot be used. However, SMR estimates (upon recovery from both of the exhausting swimming methods) were consistent across both short-duration methods. Given the increasing use of metabolic data to assess organismal responses to environmental stressors, we recommend carefully considering respirometry protocols before experimentation. Specifically, results should not readily be compared across methods; discrepancies could result in misinterpretation of MMR and aerobic scope.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据