4.7 Article

From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements

期刊

GEOSCIENCE FRONTIERS
卷 7, 期 3, 页码 315-334

出版社

CHINA UNIV GEOSCIENCES
DOI: 10.1016/j.gsf.2015.12.006

关键词

-

资金

  1. NERC SoS:RARE consortium grant [NE/M011267/1]
  2. College of Engineering, Mathematics and Physical Sciences at the University of Exeter
  3. Natural Environment Research Council [NE/M011267/1, NE/M010856/1, NE/M011429/1] Funding Source: researchfish
  4. NERC [NE/M011429/1, NE/M011267/1, NE/M010856/1] Funding Source: UKRI

向作者/读者索取更多资源

The rare earth elements are unusual when defining giant-sized ore deposits, as resources are often quoted as total rare earth oxide, but the importance of a deposit may be related to the grade for individual, or a limited group of the elements. Taking the total REE resource, only one currently known deposit (Bayan Obo) would class as giant (>1.7 x 10(7) tonnes contained metal), but a range of others classify as large (>1.7 x 10(6) tonnes). With the exception of unclassified resource estimates from the Olympic Dam IOCG deposit, all of these deposits are related to alkaline igneous activity - either carbonatites or agpaitic nepheline syenites. The total resource in these deposits must relate to the scale of the primary igneous source, but the grade is a complex function of igneous source, magmatic crystallisation, hydrothermal modification and supergene enrichment during weathering. Isotopic data suggest that the sources conducive to the formation of large REE deposits are developed in subcontinental lithospheric mantle, enriched in trace elements either by plume activity, or by previous subduction. The reactivation of such enriched mantle domains in relatively restricted geographical areas may have played a role in the formation of some of the largest deposits (e. g. Bayan Obo). Hydrothermal activity involving fluids from magmatic to meteoric sources may result in the redistribution of the REE and increases in grade, depending on primary mineralogy and the availability of ligands. Weathering and supergene enrichment of carbonatite has played a role in the formation of the highest grade deposits at Mount Weld (Australia) and Tomtor (Russia). For the individual REE with the current highest economic value (Nd and the HREE), the boundaries for the large and giant size classes are two orders of magnitude lower, and deposits enriched in these metals (agpaitic systems, ion absorption deposits) may have significant economic impact in the near future. (C) 2016, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据