4.7 Article

Effect of elemental substitution on the structure and hydrogen storage properties of LaMgNi4 alloy

期刊

MATERIALS & DESIGN
卷 93, 期 -, 页码 46-52

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2015.12.150

关键词

Hydrogen storage alloy; Elemental substitution; Phase structures; Electrochemical performances; Cycle stability

资金

  1. National Natural Science Foundations of China [51161015, 51371094, 51471054]

向作者/读者索取更多资源

Intermetallic compounds with the nominal formula LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) were prepared through induction melting, and the structure and hydrogen storage properties of the resultant alloys were extensively investigated. Results showed that the alloys exhibit sizable hydrogen absorption capacity and that elemental substitution significantly influences their microstructure and hydrogen storage properties. The discharge capacities of the alloy electrodes decrease in the order Co > Ni > Al > Cu > Mn. Moreover, the electrochemical kinetics of the alloys depend on their microstructures and phase compositions. Smaller grain size is helpful to improve the electrochemical kinetics. The gaseous hydrogen absorption capacities of the alloys are approximately 1.7 wt.% in the first hydrogenation process. Cracking caused by hydrogenation and dehydrogenation also significantly improves the hydrogen absorption kinetics of the alloy particles. The hydrogen storage capacities of the alloys rapidly decrease with increasing cycle number. This result is attributed to amorphisation of the LaMgNi4 phase during hydrogen absorption-desorption cycling (H-2-induced amorphisation). Our findings provide new insights into the capacity degradation mechanism of La-Mg-Ni system hydrogen storage alloys that may improve their cycling stability. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据