4.7 Article

Cryogenic-temperature-induced structural transformation of a metallic glass

期刊

MATERIALS RESEARCH LETTERS
卷 5, 期 4, 页码 284-291

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/21663831.2016.1263687

关键词

Metallic glass; cryogenic temperature; high-energy X-ray diffraction; flow units

资金

  1. MOST [2015CB856800]
  2. NSF of China [51671120, 51222102]
  3. German Science Foundation (DFG) via the Leibniz Program [EC 111/26-1]
  4. European Research Council under the ERC Advanced Grant INTELHYB [ERC-2013-ADG-340025]

向作者/读者索取更多资源

The plasticity of metallic glasses depends largely on the atomic-scale structure. However, the details of the atomic-scale structure, which are responsible for their properties, remain to be clarified. In this study, in-situ high-energy synchrotron X-ray diffraction and strain-rate jump compression tests at different cryogenic temperatures were carried out. We show that the activation volume of flow units linearly depends on temperature in the non-serrated flow regime. A plausible atomic deformation mechanism is proposed, considering that the activated flow units mediating the plastic flow originate from the medium-range order and transit to the short-range order with decreasing temperature. [GRAPHICS] .

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

High-Entropy Alloy-Induced Metallic Glass Transformation: Challenges Posed by in situ Alloying via Additive Manufacturing

Sepide Hadibeik, Florian Spieckermann, Martin Nosko, Farzad Khodabakhshi, Mahmoud Heydarzadeh Sohi, Juergen Eckert

Summary: A novel approach for fabricating bulk metallic glass using additive manufacturing has been studied, however, there are challenges, such as unmelted powder and compositional deviation, that need further investigation to optimize the process parameters.

ADVANCED ENGINEERING MATERIALS (2023)

Article Materials Science, Multidisciplinary

Surface Topography and Biocompatibility of cp-Ti Grade2 Fabricated by Laser-Based Powder Bed Fusion: Influence of Printing Orientation and Surface Treatments

Jelena Petrusa, Benjamin Meier, Gerda Gruenbacher, Wolfgang Waldhauser, Juergen Eckert

Summary: The effects of laser energy density on the relative density and microstructure of cp-TiGd2 fabricated by LB-PBF were studied, and the influence of printing orientation and different surface treatments on surface topography and biocompatibility were investigated. The aim is to develop additive manufacturing process parameters that can achieve full density and satisfactory biocompatibility for cp-TiGd2 as a low-cost alternative to biomedical materials. An optimized process with high density, improved surface roughness, and noncytotoxicity was achieved using a wide range of process parameters.

ADVANCED ENGINEERING MATERIALS (2023)

Article Chemistry, Physical

Reactive interdiffusion of an Al film and a CoCrFeNi high-entropy alloy at elevated temperatures

Zequn Zhang, Simon Fellner, Sergey Ketov, Megan J. Cordill, Huaping Sheng, Christian Mitterer, Kaikai Song, Christoph Gammer, Juergen Eckert

Summary: The phase evolution of alloys and atomic diffusion are closely related. However, the influence of reactive diffusion on phase formation in high-entropy alloys (HEAs) is still not clear. This study investigates the phase evolution of a multicomponent CoCrFeNi/Al diffusion couple and reveals the combined effects of enthalpy and entropy on phase formation in HEAs at elevated temperatures. Surface modification of HEAs can be achieved through film deposition and annealing processes.

INTERMETALLICS (2023)

Review Electrochemistry

Pd-based Metallic Glasses as Promising Materials for Hydrogen Energy Applications

Baran Sarac, A. Sezai Sarac, Juergen Eckert

Summary: This review provides an introduction to the use of advanced amorphous metal catalysts for hydrogen storage and production via electrochemistry. Pd-based metallic glasses have gained significant attention due to their unique atomic structure and properties for energy applications. The review covers the fabrication techniques, hydrogen sorption, hydrogen evolution, kinetics, and future prospects of Pd-based metallic glasses. Overall, it offers a comprehensive overview for large-scale hydrogen energy storage and production systems.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2023)

Article Materials Science, Multidisciplinary

Enhanced mechanical performance of gradient-structured CoCrFeMnNi high-entropy alloys induced by industrial shot-blasting

Ming-Zhi Zhang, Kun Zhang, Kai-Kai Song, Xiao-Yu Zou, Wei-Dong Song, Ke-Feng Li, Li-Na Hu, Ze-Qun Zhang, Juergen Eckert

Summary: In this study, CoCrFeMnNi high-entropy alloys with a surface gradient nanostructure were produced using industrial shot blasting, which significantly improved their mechanical properties. The severely plastically deformed surface layer had a multi-scale hierarchical structure and increased in depth with shot-blasting time. The microhardness and tensile strength of the alloy were significantly higher after shot-blasting. The improved strain hardening and prevention of early necking in the gradient-nanostructured surface layer contributed to its high toughness.

RARE METALS (2023)

Article Chemistry, Physical

Can Severe Plastic Deformation Tune Nanocrystallization in Fe-Based Metallic Glasses?

Monika Antoni, Florian Spieckermann, Niklas Plutta, Christoph Gammer, Marlene Kapp, Parthiban Ramasamy, Christian Polak, Reinhard Pippan, Michael J. J. Zehetbauer, Juergen Eckert

Summary: The effects of severe plastic deformation (SPD) by means of high-pressure torsion (HPT) on Fe73.9Cu1Nb3Si15.5B6.6 and Fe81.2Co4Si0.5B9.5P4Cu0.8 iron-based metallic glasses were compared. HPT processing extended the consolidation and deformation ranges for Fe73.9Cu1Nb3Si15.5B6.6, and achieved consolidation and deformation with minimum cracks for Fe81.2Co4Si0.5B9.5P4Cu0.8 for the first time. Various analyses revealed that Fe81.2Co4Si0.5B9.5P4Cu0.8 exhibited HPT-induced crystallization phenomena, while Fe73.9Cu1Nb3Si15.5B6.6 did not crystallize even at high HPT-deformation degrees.

MATERIALS (2023)

Article Chemistry, Multidisciplinary

Sr(II) and Ba(II) Alkaline Earth Metal-Organic Frameworks (AE-MOFs) for Selective Gas Adsorption, Energy Storage, and Environmental Application

Nikolas Kiraly, Dominika Capkova, Robert Gyepes, Nikola Vargova, Tomas Kazda, Jozef Bednarcik, Daria Yudina, Tomas Zelenka, Pavel Cudek, Vladimir Zelenak, Anshu Sharma, Vera Meynen, Virginie Hornebecq, Andrea Strakova Fedorkova, Miroslav Almasi

Summary: Two new alkaline earth metal-organic frameworks, UPJS-15 and UPJS-16, were synthesized and characterized. UPJS-15 exhibited one-dimensional channels with a size of approximately 11 x 10 angstrom(2) and showed high adsorption capacity for CO2. UPJS-16, on the other hand, did not show significant adsorption for the tested gases.

NANOMATERIALS (2023)

Editorial Material Chemistry, Multidisciplinary

Special Issue Novel Structural and Functional Material Properties Enabled by Nanocomposite Design

Juergen Eckert, Daniel Kiener

NANOMATERIALS (2023)

Article Materials Science, Multidisciplinary

Influence of flowing water vapor containing environment on high-temperature behavior of 9Cr creep-resistant steels

Maria Hagarova, Gabriela Baranova, Gustav Jablonsky, Branislav Bulko, Marek Vojtko, Vladimir Komanicky, Serhii Vorobiov, Jozef Bednarcik

Summary: This paper analyzes the oxidation behavior of MarBN steel exposed for 1000 hours at 600 and 650 degrees Celsius in a mixed atmosphere of air + 10% water vapor. The results show that different oxide layers were formed on the steel surface, including Fe2O3, Cr2O3, and (FeMnCr)2O4. The oxidation kinetics of the steel surface follows the parabolic law.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2023)

Article Engineering, Mechanical

Molecular dynamics study of shock-induced deformation phenomena and spallation failure in Ni-based single crystal superalloys

Bin Chen, Yunli Li, Daniel Sopu, Juergen Eckert, Wenping Wu

Summary: The shock-induced dynamic mechanical behavior and spallation failure of Ni-based single crystal superalloys are studied using non-equilibrium molecular dynamic simulations. Two modes of classical spallation and micro-spallation are observed during the spallation failure. The deformation mechanism is dominated by slip and drag of dislocations at low shock velocities, while complex phase transitions from FCC to BCC or disordered structures occur at higher velocities, leading to a decrease in spallation strength. The presence of voids significantly lowers the spallation strength, and the reduction in strength is proportional to the radius of the voids.

INTERNATIONAL JOURNAL OF PLASTICITY (2023)

Article Materials Science, Multidisciplinary

Accelerating matrix/boundary precipitations to explore high-strength and high-ductile Co34Cr32Ni27Al3.5Ti3.5 multicomponent alloys through hot extrusion and annealing

Xiaoming Liu, Zongde Kou, Ruitao Qu, Weidong Song, Yijia Gu, Changshan Zhou, Qingwei Gao, Jiyao Zhang, Chongde Cao, Kaikai Song, Vladislav Zadorozhnyy, Zequn Zhang, Juergen Eckert

Summary: This study utilizes high-temperature extrusion and annealing to optimize the microstructures and mechanical properties of the Co34Cr32Ni27Al3.5Ti3.5 multicomponent alloy. Hot extrusion reduces grain sizes and promotes the precipitation of nanoparticles inside the FCC matrix and grain boundaries. Subsequent annealing regulates the microstructures and enhances the mechanical properties.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

Mechanical behavior of CuZrAl metallic glass scaffolds fabricated by selective laser melting

Ming-Wei Wu, Kai Ni, Yang Lei, Xin-Xing Xiong, Yi-Ting Chuang, Quiao-En Lin, Pei Wang, Parthiban Ramasamy, Juergen Eckert

Summary: Selective laser melting (SLM) was utilized to produce CuZrAl metallic glass (MG) scaffolds with combined lattice structures of body-centered cubic and face-centered cubic (F2BCC), and the effects of lattice structures on mechanical behavior were investigated. The results revealed that curved struts remarkably enhanced compressive ductility by 122% and energy absorption by 106%. The presence of curved struts effectively prevented catastrophic shear fracture and delayed fracture occurrence due to the release of strain concentrations. This study demonstrates the potential of improving the ductility and toughness of SLM MG components through appropriate lattice structure design.

MATERIALS LETTERS (2023)

Article Crystallography

Experimental Study of the Evolution of Creep-Resistant Steel's High-Temperature Oxidation Behavior

Gabriela Baranova, Maria Hagarova, Milos Matvija, David Csik, Vladimir Girman, Jozef Bednarcik, Pavel Bekec

Summary: This study reveals the formation of the oxide layer on the surface of 9CrNB steel in the presence of water vapor. The layer consists of hematite Fe2O3, Cr2O3, Fe3O4, and Fe3O4+(Fe,Cr)2O4, with nodules and pores formed during the oxidation process. Alloying elements like W, Co, Mn, and Si were found in increased concentrations, both in the oxide layer and at the steel-matrix-oxide interface. Long-term oxidation led to the formation of coarser carbides and finer MC particles, with Cr diffusion playing a role.

CRYSTALS (2023)

Article Engineering, Manufacturing

Synergistic Strengthening Mechanisms of Dual-Phase (TiN plus AlN) Reinforced Aluminum Matrix Composites Prepared by Laser Powder Bed Fusion

Ruiqi Wang, Lixia Xi, Lili Feng, Baran Sarac, Konda Gokuldoss Prashanth, Juergen Eckert, Dongdong Gu

Summary: Dual-phase reinforcing approach is an efficient strategy for fabricating advanced aluminum matrix composites. However, designing a dual-phase reinforcing system with synergistic strengthening effect for LPBF process is challenging.

3D PRINTING AND ADDITIVE MANUFACTURING (2023)

Article Materials Science, Multidisciplinary

Solving the problem of solidification cracking during additive manufacturing of CrMnFeCoNi high-entropy alloys through addition of Cr3C2 particles to enhance microstructure and properties

Xintian Wang, Zhiyong Ji, Robert O. Ritchie, Ilya Okulov, Juergen Eckert, Chunlei Qiu

Summary: In this study, TiAl and Cr3C2 particles were added to a CrMnFeCoNi alloy to improve its processibility and mechanical properties. The addition of TiAl particles resulted in the formation of cracks, but the further addition of Cr3C2 particles helped suppress hot cracking. The presence of long-range ordered domains and precipitates contributed to the improved strength of the dual-particle containing alloy.

MATERIALS TODAY ADVANCES (2023)

暂无数据