4.7 Article

Microarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system

期刊

SWARM AND EVOLUTIONARY COMPUTATION
卷 28, 期 -, 页码 144-160

出版社

ELSEVIER
DOI: 10.1016/j.swevo.2016.02.002

关键词

Microarray medical data; Pattern classification; Modified cat swarm optimization; RR; KRR and its variants; Support vector machine and random forest

向作者/读者索取更多资源

Microarray gene expression based medical data classification has remained as one of the most challenging research areas in the field of bioinformatics, machine learning and pattern classification. This paper proposes two variations of kernel ridge regression (KRR), namely wavelet kernel ridge regression (WKRR) and radial basis kernel ridge regression (RKRR) for classification of microarray medical datasets. Microarray medical datasets contain irrelevant and redundant genes which cause high number of gene expression i.e. dimensionality and small sample sizes. To overcome the curse of dimensionality of the microarray datasets, modified cat swarm optimization (MCSO), a naturally inspired evolutionary algorithm, is used to select the most relevant features from the datasets. The adequacies of the classifiers are demonstrated by employing four from each binary and multi-class microarray medical datasets. Breast cancer, prostate cancer, colon tumor, leukemia datasets belong to the former and leukemial, leukemia2, SRBCT, brain tumorl to the latter. A number of useful performance evaluation measures including accuracy, sensitivity, specificity, confusion matrix, Gmean, F-score and the area under the receiver operating characteristic (ROC) curve are considered to examine the efficacy of the model. Other models like simple ridge regression (RR), online sequential ridge regression (OSRR), support vector machine radial basis function (SVMRBF), support vector machine polynomial (SVMPoly) and random forest are studied and analyzed for comparison. The experimental results demonstrate that KRR outperforms other models irrespective of the datasets and WKRR produces better results as compared to RKRR. Finally, when the results are compared on the basis of binary and multi-class datasets, it is found that binary class yields a little bit better result as compared to the multiclass irrespective of models. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Computer Science, Artificial Intelligence

Energy-efficient flexible job shop scheduling problem considering discrete operation sequence flexibility

Guiliang Gong, Jiuqiang Tang, Dan Huang, Qiang Luo, Kaikai Zhu, Ningtao Peng

Summary: This paper proposes a flexible job shop scheduling problem with discrete operation sequence flexibility and designs an improved memetic algorithm to solve it. Experimental results show that the algorithm outperforms other algorithms in terms of performance. The proposed model and algorithm can help production managers obtain optimal scheduling schemes considering operations with or without sequence constraints.

SWARM AND EVOLUTIONARY COMPUTATION (2024)

Article Computer Science, Artificial Intelligence

A differential evolution algorithm for solving mixed-integer nonlinear programming problems

Daniel Molina-Perez, Efren Mezura-Montes, Edgar Alfredo Portilla-Flores, Eduardo Vega-Alvarado, Barbara Calva-Yanez

Summary: This paper presents a new proposal based on two fundamental strategies to improve the performance of the differential evolution algorithm when solving MINLP problems. The proposal considers a set of good fitness-infeasible solutions to explore promising regions and introduces a composite trial vector generation method to enhance combinatorial exploration and convergence capacity.

SWARM AND EVOLUTIONARY COMPUTATION (2024)