4.7 Article

Melanocortin-3 receptors in the limbic system mediate feeding-related motivational responses during weight loss

期刊

MOLECULAR METABOLISM
卷 5, 期 7, 页码 566-579

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.molmet.2016.05.002

关键词

Melanocortins; Melanocortin-3 receptors; Dopamine; Motivation; Appetite; Caloric restriction

资金

  1. NIDA NIH HHS [R03 DA033499, R01 DA034116] Funding Source: Medline
  2. NIDDK NIH HHS [R01 DK073189] Funding Source: Medline

向作者/读者索取更多资源

Objective: Appetitive responses to weight loss are mediated by a nutrient-sensing neural network comprised of melanocortin neurons. The role of neural melanocortin-3 receptors (MC3R) in mediating these responses is enigmatic. Mc3r knockout mice exhibit a paradoxical phenotype of obesity and reduced feeding-related behaviors in situations of nutrient scarcity. Here we examined whether MC3Rs expressed in mesolimbic neurons regulate feeding-related motivational responses. Methods: Interactions between Mc3r genotype, cognitive function and energy balance on food self-administration were assessed using operant conditioning with fixed-and progressive ratio (FR1/PR1) settings. Inhibition of Mc3r transcription by a loxP-flanked transcriptional blocker (TB) in C57BL/6JN mice (Mc3rTB/TB) was reversed in mesolimbic neurons using DAT-Cre (DAT-MC3R). Results: Caloric restriction (CR) caused 10-15% weight loss and increased motivation to acquire food rewards during training sessions. c-Fos-expression in the nucleus accumbens was increased 1 h following food presentation. While exhibiting weight loss, total food self-administration, enhanced motivation to self-administer food rewards in training sessions held during CR and c-Fos-activation in the nucleus accumbens following re-feeding were all markedly attenuated in Mc3rTB/TB mice. In contrast, cognitive abilities were normal in Mc3rTB/TB mice. Total food self-administration during FR1 sessions was not rescued in DAT-MC3R mice, however enhanced motivational responses to self-administer food rewards in PR1 conditions were restored. The nutrient-partitioning phenotype observed with Mc3r-deficiency was not rescued in DAT-MC3R mice. Conclusions: Mesolimbic MC3Rs mediate enhanced motivational responses during CR. However, they are insufficient to restore normal caloric loading when food is presented during CR and do not affect metabolic conditions altering nutrient partitioning. (C) 2016 The Author(s). Published by Elsevier GmbH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据