4.4 Article

Simulated thrombin responses in venous valves

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jvsv.2015.09.005

关键词

-

资金

  1. National Institutes of Health [DK06927, HL106018, HL56819]

向作者/读者索取更多资源

Objective: Venous thromboembolism frequently results in thrombi formation near or within the pocket of a venous valve due to recirculating hemodynamics, which has been largely attributed to hypoxia-induced tissue factor (TF) expression. Numerical models are now capable of assessing the spatiotemporal behavior of the TF-initiated coagulation cascade under nonuniform hemodynamics. The aim of this study was to use such a numerical simulation to analyze the degree and location of thrombin formation with respect to TF position in the presence of disturbed flow induced by an open venous valve. Methods: Thrombin formation was simulated using a computational model that captures the hemodynamics, kinetics, and chemical transport of 22 biochemical species. Disturbed flow is described by the presence of a valve in the equilibrium phase of the valve cycle with leaflets in a fully open position. Three different positions of TF downstream of the valve opening were investigated. Results: The critical amount of TF required to initiate a thrombotic response is reduced by up to 80% when it is positioned underneath the recirculating regions near the valve opening. In addition, because of the increased surface area of the open valve cusp in conjunction with recirculating hemodynamics, it was observed that thrombin is generated inside the valve pocket even when the exposed region of TF is downstream of the valve. Conclusions: The presence of prothrombotic surface reactions in conjunction with recirculating hemodynamics provides an additional mechanism for thrombus formation in venous valves that does not require direct damage or dysfunction to the valve itself.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据