4.1 Article

New multi-component solid forms of anti-cancer drug Erlotinib: role of auxiliary interactions in determining a preferred conformation

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S2052520616003607

关键词

crystal engineering; supramolecular synthon; cocrystals; salts

资金

  1. UGC
  2. DST

向作者/读者索取更多资源

Erlotinib is a BCS (biopharmaceutical classification system) class II drug used for the treatment of non-small cell lung cancer. There is an urgent need to obtain new solid forms of higher solubility to improve the bioavailability of the API (active pharmaceutical ingredient). In this context, cocrystals with urea, succinic acid, and glutaric acid and salts with maleic acid, adipic acid, and saccharin were prepared via wet granulation and solution crystallizations. Crystal structures of the free base (Z' = 2), cocrystals of erlotinib-urea (1: 1), erlotinib-succinic acid monohydrate (1: 1: 1), erlotinib-glutaric acid monohydrate (1: 1: 1) and salts of erlotinib-adipic acid adipate (1: 0.5: 0.5) are determined and their hydrogen-bonding patterns are analyzed. Self recognition via the (amine) N-H center dot center dot center dot N (pyridine) hydrogen bond between the API molecules is replaced by several heterosynthons such as acid-pyridine, amide-pyridine and carboxylate-pyridinium in the new binary systems. Auxiliary interactions play an important role in determining the conformation of the API in the crystal. FT-IR spectroscopy is used to distinguish between the salts and cocrystals in the new multi-component systems. The new solid forms are characterized by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) to confirm their unique phase identity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据