4.6 Article

Electronic and optical properties of pristine and oxidized borophene

期刊

2D MATERIALS
卷 3, 期 4, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/2053-1583/3/4/045006

关键词

borophene; electronic structure; optical properties; ab initio; oxidation

资金

  1. Federation Wallonie-Bruxelles through Action de Recherche Concertee (ARC) [16/21-077]
  2. Belgium FNRS
  3. European Union [696656]
  4. Fonds de la Recherche Scientifique de Belgique [2.5020.11]

向作者/读者索取更多资源

Borophene, a two-dimensional monolayer of boron atoms, was recently synthesized experimentally and was shown to exhibit polymorphism. In its closed-packed triangular form, borophene is expected to exhibit anisotropic metallic character with relatively high electron velocities. At the same time, very low optical conductivities in the infrared-visible light region were predicted. Based on its promising electronic transport properties and its high transparency, borophene could become a genuine lego piece in the 2D materials assembling game known as the van der Waals heterocrystal approach. However, borophene is naturally degraded in ambient conditions and it is therefore important to assess the mechanisms and the effects of oxidation on borophene monolayers. Optical and electronic properties of pristine and oxidized borophene are here investigated by first-principles approaches. The transparent and conductive properties of borophene are elucidated by analyzing the electronic structure and its interplay with light. Optical response of borophene is found to be strongly affected by oxidation, suggesting that optical measurements can serve as an efficient probe for borophene surface contamination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据