4.7 Article

Global and local buckling analysis of grid-stiffened composite panels

期刊

COMPOSITE STRUCTURES
卷 119, 期 -, 页码 767-776

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2014.09.050

关键词

Global and local buckling; Grid-stiffened structures; Composite; Homogenization techniques; Bloch wave theory

向作者/读者索取更多资源

There is a renewed interest in grid-stiffened composite structures; they are not only competitive with conventional stiffened constructions and sandwich shells in terms of weight but also enjoy superior damage tolerance properties. In this paper, both global and local buckling is investigated for orthogrid- and isogrid-stiffened composite panels. Homogenized properties corresponding to classical lamination theory are obtained by matching the strain energy of stiffened and equivalent unstiffened cells, and then used in global buckling analysis. Bloch wave theory is adopted to calculate the local buckling load, where the interaction of adjacent cells is fully taken into account. Instead of considering skin buckling and stiffener crippling separately, the skin and stiffeners are assembled together at the level of a characteristic cell. The critical instabilities can be captured whether they are related to the skin, stiffener or their interaction. The proposed combination of global/local models can also be used to predict the material failure. Numerical examples of isotropic panels show that the local buckling loads predicted by the proposed method match detailed finite element calculations well for eccentric or symmetrically located stiffeners with different torsional stiffness. The proposed method is further validated using typical composite configurations of flat panels and circular cylinders. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据