4.5 Article

Effect of the Thermodynamic Behavior of Selective Laser Melting on the Formation of In situ Oxide Dispersion-Strengthened Aluminum-Based Composites

期刊

METALS
卷 6, 期 11, 页码 -

出版社

MDPI AG
DOI: 10.3390/met6110286

关键词

selective laser melting; aluminum matrix composites; microstructure; thermodynamic behavior; formation mechanism

资金

  1. Shanghai Aerospace Science and Technology Innovation Fund [SAST2015053]

向作者/读者索取更多资源

This paper presents a comprehensive investigation of the phase and microstructure, the thermodynamic behavior within the molten pool, and the growth mechanism of in situ oxide dispersion-strengthened (ODS) aluminum-based composites processed by a selective laser melting (SLM) additive manufacturing/3D printing process. The phase and microstructure were characterized by X-ray diffraction (XRD) and a scanning electronic microscope (SEM) equipped with EDX, respectively. The thermodynamic behavior within the molten pool was investigated for a comprehensive understanding on the growth mechanism of the SLM-processed composite using a finite volume method (FVM). The results revealed that the in situ Al2Si4O10 ODS Al-based composites were successfully fabricated by SLM. Combined with the XRD spectrum and EDX analysis, the new silica-rich Al2Si4O10 reinforcing phase was identified, which was dispersed around the grain boundaries of the aluminum matrix under a reasonable laser power of 200 W. Combined with the activity of Marangoni convection and repulsion forces, the characteristic microstructure of SLM-processed Al2Si4O10 ODS Al-based composites tended to transfer from the irregular network structure to the nearly sphere-like network structure in regular form by increasing the laser power. The formation mechanism of the microstructure of SLM-processed Al2Si4O10 ODS Al-based composites is thoroughly discussed herein.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据