4.3 Article

Non-linear mechanical behaviour and bio-composite modelling of oil palm mesocarp fibres

期刊

COMPOSITE INTERFACES
卷 23, 期 1, 页码 37-49

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/09276440.2016.1091681

关键词

Oil palm fibres; viscoelasticity; finite element analysis (FEA); tensile testing

资金

  1. Universiti Putra Malaysia under Universiti Putra Malaysia Research Grant Scheme [GP-IPM/2013/9405300]
  2. Malaysian Ministry of Education under Fundamental Research Grant Scheme [FRGS/03-02-13-1284FR]

向作者/读者索取更多资源

Understanding the non-linear mechanical behaviour of oil palm mesocarp fibres (OPMF) is important for bio-composite application. The mechanical characterisation of this fibre is challenging due to the microstructure of the fibres consisting of silica bodies on the surface and cellular structures within the cross section. In this work, we proposed a constitutive material model for OPMF by including a stress-softening function into the large strain viscoelastic model. The model shows agreement with loading-unloading and stress relaxation tensile tests. The model was then used for micro-scale finite element modelling of the fibre-silica body-matrix (resin) interface to simulate sliding of a bio-composite material. A multi-particles model was also developed to check the effect of the constitutive model towards the mechanics of a bio-composite system. Modelling results suggested that under the micro-scale level (similar to 50m), silica body plays a major role in improving the mechanical behaviour of the bio-composite system. On the other hand, under the macro-scale level (similar to 0.18mm), a single fibre model is sufficient to simulate a bio-composite multi-fibres material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据