4.3 Review

Histological aspects of the fixed-particle model of stone formation: animal studies

期刊

UROLITHIASIS
卷 45, 期 1, 页码 75-87

出版社

SPRINGER
DOI: 10.1007/s00240-016-0949-7

关键词

Calcium oxalate; Randall's plaque; Randall's plug; Fixed particle; Free particle; Animal model

资金

  1. NIH [RO1-DK078602, RO1-DK092311]

向作者/读者索取更多资源

Crystallization by itself is not harmful as long as the crystals are not retained in the kidneys and are allowed to pass freely down the renal tubules to be excreted in the urine. A number of theories have been proposed, and studies performed, to determine the mechanisms involved in crystal retention within the kidneys. It has been suggested that urinary transit through the nephron is too fast for crystals to grow large enough to be retained. Thus, free particle mechanism alone cannot lead to stone formation, and there must be a mechanism for crystal fixation within the kidneys. Animal model studies suggest that crystal retention is possible through both the free- and fixed-particle mechanisms. Crystal-cell interaction leads to pathological changes which promote crystal attachment to either epithelial cells or their basement membrane. Alternatively, crystals aggregate and produce large enough particles to block the tubules particularly at sites, where urinary flow is affected because of changes in the luminal diameter of the tubule. Crystal deposits plugging the openings of the ducts of Bellini may be the result of such a phenomenon. Intratubular crystals translocating to renal interstitium may produce osteogenic changes in the epithelial or endothelial cells resulting in the formation of the Randall's plaques. Thus, fixation appears to be either through the formation of Randall's plugs, crystal plugs clogging the openings of the ducts of Bellini or sub-epithelial crystal deposits, and the Randall's plaques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据