4.5 Review

Abandoned metalliferous mines: ecological impacts and potential approaches for reclamation

期刊

出版社

SPRINGER
DOI: 10.1007/s11157-016-9398-6

关键词

Abandoned metal mines; Heavy metal pollution; Reclamation; Phytoremediation; Phytostabilization; Soil health

资金

  1. Government of Australia (Department of Education, Employment and Workplace Relations)
  2. UniSA, Adelaide

向作者/读者索取更多资源

The lack of awareness for timely management of the environment surrounding a metal mine site results in several adverse consequences such as rampant business losses, abandoning the bread-earning mining industry, domestic instability and rise in ghost towns, increased environmental pollution, and indirect long-term impacts on the ecosystem. Although several abandoned mine lands (AMLs) exist globally, information on these derelict mines has not been consolidated in the literature. We present here the state-of-the-art on AMLs in major mining countries with emphasis on their impact towards soil health and biodiversity, remediation methods, and laws governing management of mined sites. While reclamation of metalliferous mines by phytoremediation is still a suitable option, there exist several limitations for its implementation. However, many issues of phytoremediation at the derelict mines can be resolved following phytostabilization, a technology that is effective also at the modern operational mine sites. The use of transgenic plant species in phytoremediation of metals in contaminated sites is also gaining momentum. In any case, monitoring and efficacy testing for bioremediation of mined sites is essential. The approaches for reclamation of metalliferous mines such as environmental awareness, effective planning and assessment of pre- and post-mining activities, implementation of regulations, and a safe and good use of phytostabilizers among the native plants for revegetation and ecological restoration are discussed in detail in the present review. We also suggest the use of microbially-enhanced phytoremediation and nanotechnology for efficient reclamation of AMLs, and identify future work warranted in this area of research. Further, we believe that the integration of science of remediation with mining policies and regulations is a reliable option which when executed can virtually balance economic development and environmental destruction for safer future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Environmental Sciences

Iron-modified biochar derived from sugarcane bagasse for adequate removal of aqueous imidacloprid: sorption mechanism study

Yongliang Chen, Masud Hassan, Md Nuruzzaman, Huiming Zhang, Ravi Naidu, Yanju Liu, Ling Wang

Summary: Adsorption is a promising remediation technology for separating organic and inorganic agrochemicals from contaminated soil and water. This study focuses on the use of iron-modified base-activated biochar (FeBBC) as a low-cost adsorbent for removing the insecticide imidacloprid from water. The FeBBC exhibits high adsorption capacity and both physical and chemical interactions contribute to the sorption process. The results demonstrate the potential of FeBBC as an effective adsorbent for removing organic contaminants.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH (2023)

Article Agronomy

Impact of bare and CMC-coated Fe oxide nanoparticles on microbial activity and immobilising zinc, lead, and cadmium in a contaminated soil

Solmaz Bidast, Ahmad Golchin, Ahmad Baybordi, Amir Mohseni, Ravi Naidu

Summary: The potential of bare and carboxymethyl cellulose (CMC)-coated iron oxide nanoparticles (FeONPs) for stabilising lead (Pb), zinc (Zn), and cadmium (Cd) in contaminated soil was investigated. The results showed that CMC-coated FeONPs were more effective in decreasing the availability of potentially toxic elements in the soil. CMC-coated goethite was the most effective treatment for reducing Zn and Cd availability, while CMC-coated magnetite was the most effective for Pb stabilisation.

ARCHIVES OF AGRONOMY AND SOIL SCIENCE (2023)

Article Environmental Sciences

Can the mouse model successfully predict mixed metal(loid)s bioavailability in humans from contaminated soils?

M. A. A. Wijayawardena, K. Yan, Y. Liu, R. Naidu

Summary: Mouse models have been commonly used to predict the bioavailability of metals and chemicals in humans. In this study, the effectiveness of mouse models in predicting the bioavailability of lead in metal mixtures was confirmed, while their ability to predict the bioavailability of arsenic was found to be limited.

CHEMOSPHERE (2023)

Article Environmental Sciences

Can calcite play a role in the adsorption of glyphosate? A comparative study with a new challenge

Sara Ghavamifar, Ravi Naidu, Vahid Mozafari, Zhaohui Li

Summary: In this study, two sorbents, calcite and saponite, were used to investigate their capacity to sorb glyphosate. It was found that the morphology of calcite transformed and the zeta potential became positive in alkaline pH, contradicting previous research. The modified sorbents were added to soil samples to study their effects on glyphosate sorption.

CHEMOSPHERE (2023)

Article Environmental Sciences

Accelerated transformation of plastic furniture into microplastics and nanoplastics by fire

Yunlong Luo, Ravi Naidu, Cheng Fang

Summary: This study investigates the surface functional group changes and release of microplastics and nanoplastics during the combustion process of an outdoor plastic chair. Scanning electron microscopy (SEM) and Raman imaging techniques are used to characterize the fragments created when the plastic is burned and deposited on solid surfaces. Different algorithms, including logic-based, non-supervised PCA-based, algebra-based, and hybrid algorithms, are tested and optimized to extract key information for plastics characterization, particularly in distinguishing different degrees of burning. The findings estimate that tens of microplastics and nanoplastics are created per square micron during the combustion process.

ENVIRONMENTAL POLLUTION (2023)

Article Environmental Sciences

Predictive modeling of indoor dust lead concentrations: Sources, risks, and benefits of intervention

Matthew Dietrich, Cynthia F. Barlow, Jane A. Entwistle, Diana Meza-Figueroa, Chenyin Dong, Peggy Gunkel-Grillon, Khadija Jabeen, Lindsay Bramwell, John T. Shukle, Leah R. Wood, Ravi Naidu, Kara Fry, Mark Patrick Taylor, Gabriel M. Filippelli

Summary: Lead (Pb) contamination continues to pose health risks in all countries, especially low-and middle-income countries. Predicting elevated household dust Pb levels and the potential impact of low-cost interventions has been a challenge. A global dataset of household dust samples was used to predict elevated dust Pb levels, with housing age being a significant predictor. The predictive accuracy of the model is lower for countries outside of England, the U.S., and Australia due to differences in regulations and data availability. Implementing simple household interventions in these countries could result in significant cost savings and reduced exposure to harmful Pb dust sources globally.

ENVIRONMENTAL POLLUTION (2023)

Article Environmental Sciences

Efficient bioremediation of laboratory wastewater co-contaminated with PAHs and dimethylformamide by a methylotrophic enrichment culture

Kartik Dhar, Anithadevi Kenday Sivaram, Logeshwaran Panneerselvan, Kadiyala Venkateswarlu, Mallavarapu Megharaj

Summary: This study evaluated the biodegradation of dimethylformamide (DMF) and bioremediation of laboratory wastewater (LWW) co-contaminated with poly-cyclic aromatic hydrocarbons (PAHs) by a methylotrophic enrichment culture. The culture efficiently degraded high concentrations of DMF and removed DMF, phenanthrene, pyrene, and BaP in the LWW. The efficacy of bioremediation was further confirmed through genotoxicity assays and oxidative stress assays.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2023)

Article Environmental Sciences

Thermal kinetics of PFAS and precursors in soil: Experiment and surface simulation in temperature-time plane

Al Amin, Yunlong Luo, Annette Nolan, Megharaj Mallavarapu, Ravi Naidu, Cheng Fang

Summary: This study investigates the degradation and conversion of PFAS in contaminated soil during the firefighting process by exposing the soil sample to high temperatures. The research finds that PFAS precursors, non-C-F bonded PFAS, PFCA, and PFSA can all be degraded under high temperature conditions. A 2D Gaussian surface is used to fit the concentration dependence of PFAS on temperature and time, providing a visual representation of the complex thermal kinetic process. This study offers a simple approach for monitoring and optimizing the thermal treatment of PFAS-contaminated soil.

CHEMOSPHERE (2023)

Article Environmental Sciences

Cow manure compost-based products as alternative rhizobial carrier materials

Yantao Li, Rahat Shabir, Mehran Rezaei Rashti, Mallavarapu Megharaj, Chengrong Chen

Summary: This research explored the potential of four cow manure compost (CMC)-based products as a rhizobial carrier. The product with 50% gypsum showed better physicochemical characteristics and the highest strain survival rate in soil. This study demonstrated the great potential of CMC-based commercial products as alternative carrier materials for rapid commercial development of inoculants.

LAND DEGRADATION & DEVELOPMENT (2023)

Article Environmental Sciences

Using soil enzyme Vmax as an indicator to evaluate the ecotoxicity of lower-ring polycyclic aromatic hydrocarbons in soil: Evidence from fluorescein diacetate hydrolase kinetics

Yan Li, Ziquan Wang, Haixia Tian, Mallavarapu Megharaj, Hanzhong Jia, Wenxiang He

Summary: This study investigated the effects of two typical lower-ring polycyclic aromatic hydrocarbons (PAHs), naphthalene (Nap) and anthracene (Ant), on the activity and kinetic characteristics of FDA hydrolases in six soils. The results showed that both Nap and Ant significantly inhibited the activity of FDA hydrolase, and the inhibition was influenced by soil organic matter.

SCIENCE OF THE TOTAL ENVIRONMENT (2023)

Article Biotechnology & Applied Microbiology

Staphylococcus edaphicus KCB02A11 incorporated with natural adsorbents: first report on its tolerance and removal of hexavalent chromium [Cr(VI)]

A. M. K. C. B. Aththanayake, I. V. N. Rathnayake, M. P. Deeyamulla, Mallavarapu Megharaj

Summary: Deterioration of ecosystem quality caused by toxic metals, especially hexavalent chromium, is a global issue. In this study, a bacterium called Staphylococcus edaphicus KCB02A11 showed high efficiency in removing hexavalent chromium from water within 96 hours and a wide range of concentrations (0.025-8.5 mg/L). By incorporating the isolated strain with natural substrates like hay and wood husk, 100% removal of hexavalent chromium (at 8.5 mg/L) was achieved in less than 72 hours, indicating its potential for large-scale metal removal. This study provides the first report on hexavalent chromium tolerance and removal by Staphylococcus edaphicus KCB02A11.

WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY (2023)

Article Environmental Sciences

Anaerobic biodegradation of phenanthrene and pyrene by sulfate-reducing cultures enriched from contaminated freshwater lake sediments

Kartik Dhar, Sudharsanam Abinandan, Tanmoy Sana, Kadiyala Venkateswarlu, Mallavarapu Megharaj

Summary: Our study examined the anaerobic microbial degradation of hazardous polycyclic aromatic hydrocarbons (PAHs) and found that sulfate-reducing bacteria (SRB) in contaminated freshwater sediments can effectively degrade three-ringed phenanthrene and highly recalcitrant four-ringed pyrene. Desulfovibrio was the dominant bacterium in the phenanthrene-degrading culture, while Rhodopseudomonas was a significant member in the pyrene-degrading culture. This research indicates that SRB could play a crucial role in the natural attenuation of PAHs in oxygen-depleted freshwater sediments.

ENVIRONMENTAL RESEARCH (2023)

Article Materials Science, Multidisciplinary

An advanced analytical approach to assess the long-term degradation of microplastics in the marine environment

Carbery Maddison, C. I. Sathish, Daggubati Lakshmi, O'Connor Wayne, Thava Palanisami

Summary: Understanding the degradation of microplastics in marine environments is essential for assessing their risks. Our study demonstrates that long-term marine weathering leads to significant degradation of plastic surfaces and bulk-phases, with variations depending on time and plastic polymer type. Moreover, secondary micronanoplastics are formed from weathered plastic surfaces. Our findings provide valuable information for developing risk assessment frameworks and future plastics policy.

NPJ MATERIALS DEGRADATION (2023)

Review Engineering, Environmental

Potential of microalgae and cyanobacteria to improve soil health and agricultural productivity: a critical view

Balasubramanian Ramakrishnan, Naga Raju Maddela, Kadiyala Venkateswarlu, Mallavarapu Megharaj

Summary: Microalgae, as integral members of the soil microbial community, have the potential to modify soil conditions and interact with other organisms, but their agronomic benefits and ecological functions in agriculture still require further research and application.

ENVIRONMENTAL SCIENCE-ADVANCES (2023)

Review Environmental Sciences

Additives of plastics: Entry into the environment and potential risks to human and ecological health

Naga Raju Maddela, Dhatri Kakarla, Kadiyala Venkateswarlu, Mallavarapu Megharaj

Summary: The steep rise in global plastic production and discharge of plastic waste pose a threat to the ecosystem and human health due to the generation of particulate plastics and release of toxic chemical additives. However, only a small percentage of plastic additives have been characterized for their ecological concern, and information on their ecotoxicity remains incomplete. This review aims to provide detailed insights into the ecological impacts of plastic additives, which are crucial for restricting their use, finding eco-friendly alternatives, and establishing or revising guidelines by global health and environmental agencies.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2023)

暂无数据