4.3 Article

Harbour porpoise movement strategy affects cumulative number of animals acoustically exposed to underwater explosions

期刊

MARINE ECOLOGY PROGRESS SERIES
卷 557, 期 -, 页码 261-275

出版社

INTER-RESEARCH
DOI: 10.3354/meps11829

关键词

Marine mammals; Anthropogenic sound; Individual-based model; Cumulative effects; Impact assessment; Population consequences of disturbance; Species distribution; Acoustics

资金

  1. Netherlands Ministry of Defence
  2. NWO-ZKO grant 'Effects of underwater noise on fish and marine mammals in the North Sea'

向作者/读者索取更多资源

Anthropogenic sound in the marine environment can have negative consequences for marine fauna. Since most sound sources are intermittent or continuous, estimating how many individuals are exposed over time remains challenging, as this depends on the animals' mobility. Here we explored how animal movement influences how many, and how often, animals are impacted by sound. In a dedicated study, we estimated how different movement strategies affect the number of individual harbour porpoises Phocoena phocoena receiving temporary or permanent hearing loss due to underwater detonations of recovered explosives (mostly WWII aerial bombs). Geo-statistical distribution models were fitted to data from 4 marine mammal aerial surveys and used to simulate the distribution and movement of porpoises. Based on derived doseresponse thresholds for temporary (TTS) or permanent threshold shifts (PTS), we estimated the number of animals affected in a single year. When individuals were free-roaming, an estimated 1200 and 24 000 unique individuals would suffer PTS and TTS, respectively. This equates to respectively 0.50 and 10% of the estimated North Sea population. In contrast, when porpoises remained in a local area, fewer animals would receive PTS and TTS (1100 [0.47%] and 15 000 [6.5%], respectively), but more individuals would be subjected to repeated exposures. Because most anthropogenic sound-producing activities operate continuously or intermittently, snapshot distribution estimates alone tend to underestimate the number of individuals exposed, particularly for mobile species. Hence, an understanding of animal movement is needed to estimate the impact of underwater sound or other human disturbance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据