4.6 Article

Chelate-induced formation of Li2MnSiO4 nanorods as a high capacity cathode material for Li-ion batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 4, 期 24, 页码 9447-9454

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta01269h

关键词

-

资金

  1. Program for New Century Excellent Talents in University
  2. Ministry of Education, China [NCET-11-0810]
  3. National Science Foundation [NSF-DMR 1505902]
  4. China Scholarship Council (CSC)

向作者/读者索取更多资源

Li2MnSiO4 with a theoretical capacity of 333 mA h g(-1) is considered as a potential high capacity cathode material for lithium-ion batteries. However, it suffers from impure phases, low electronic conductivity, and poor cycle performance, which hinder its application in electric vehicles (EVs) and hybrid electric vehicles (HEVs). In this work, a chelating agent-assisted hydrothermal method was proposed to synthesize pure phase Li2MnSiO4 nanorods. Taking advantage of the strong chelating effect of ethylenediamine tetraacetic acid tetrasodium salt (EDTA-4Na), the reaction kinetics was substantially improved by changing the Mn source from Mn(OH)(2) precipitate to soluble Mn-containing chelates, which simultaneously controlled the purity and nanoscale architecture of Li2MnSiO4. After coating with amorphous carbon, Li2MnSiO4@C with a 9% carbon coating exhibited a discharge capacity of 275 mA h g(-1) in the initial cycle with a current density of 8 mA g(-1) (0.05C, 1C = 166 mA g(-1)), and a better cycle property with a capacity retention of 115 mA h g(-1) after 50 cycles was obtained with a higher carbon coating (19%). The good electrochemical properties may be attributed to synergetic effects of the high phase purity and well-dispersed one-dimensional morphology of Li2MnSiO4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据