4.6 Article

Highly efficient solid-state mesoscopic PbS with embedded CuS quantum dot-sensitized solar cells

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 4, 期 3, 页码 785-790

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta08668j

关键词

-

资金

  1. New & Renewable Energy Core Technology Program of Korea Institute of Energy Technology Evaluation and Planning (KETEP) [201330300001]
  2. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning, Republic of Korea [2014R1A5A1009799]

向作者/读者索取更多资源

We synthesized a new type of PbS colloidal quantum dot (QDs) embedding CuS (PbS[CuS] QDs) by rapid injection of a sulfur precursor into a lead precursor solution followed by cation exchange of Pb with Cu ions. By the cation exchange reaction, the edge of PbS QDs was partially converted into CuS, which enhances the absorptivity of light and creates an additional absorption band in the near infrared (NIR) region due to the surface plasmon resonance (SPR) effect by the existence of vacancies in CuS. From the transient and static photoluminescence (PL) decay measurements, we found that the PL decay time of PbS[CuS] QDswas similar to 2 fold longer than that of the PbSQDs and the PbS[CuS] QDs showed great PL quenching compared to the PbS QDs. Accordingly, the generated excitons in PbS/CuS QDs are more easily dissociated into free charge carriers than those in the PbS QDs. As a result, the mesoscopic PbS/CuS QD-sensitized solar cells constructed using FTO (F-doped SnO2)/bl-TiO2 (blocking TiO2)/mesoscopic TiO2/PbS/CuS CQDs/P3HT (poly-3-hexylthiophene)/Au showed 0.6 V open-circuit voltage (V-oc), 20.7 mA cm(-2) short-circuit current density (J(sc)), 65% fill factor (FF), and 8.07% overall power conversion efficiency under 1 sun conditions (100 mWcm(-2) AM 1.5G) due to the improved absorptivity and the reduced recombination of charge carriers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据