4.7 Article

Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

期刊

COMBUSTION AND FLAME
卷 162, 期 10, 页码 3569-3579

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2015.06.013

关键词

Flame stabilization; Transverse jet; Syngas combustion; Direct numerical simulation

资金

  1. office of Science of the US Department of Energy [DE-AC05-00OR22725]
  2. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
  3. United States Department of Energy [DE-AC04-94AL85000]
  4. Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy
  5. Research Council of Norway [215707]
  6. BIGCCS Centre under the Norwegian research program Centres for Environment-friendly Energy Research (FME)

向作者/读者索取更多资源

Three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H-2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization are located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H-2 or CO species reveals that hydrogen contributes significantly to premixing, particularly in explosive zones in the upstream leeward region, i.e. at the preferred flame stabilization location. Therefore, a small amount of H-2 diffuses much faster than CO, creating relatively homogeneous mixture pockets depending on the competition with turbulent mixing. These pockets, together with high H-2 reactivity, contribute to stabilizing the flame at a consistent location regardless of the CO concentration in the fuel for the present range of DNS conditions. Published by Elsevier Inc. on behalf of The Combustion Institute.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据