4.6 Article

Correlating Titania Nanostructured Morphologies with Performance as Anode Materials for Lithium-Ion Batteries

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 4, 期 12, 页码 6299-6312

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.6b00763

关键词

Titanium dioxide; Metal oxide; Morphology dependence; Electrochemical performance; Anode materials; Lithium-ion batteries

资金

  1. Center for Mesoscale Transport Properties
  2. U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673, DE-SC0012704]
  3. Division Of Human Resource Development
  4. Direct For Education and Human Resources [1311318] Funding Source: National Science Foundation

向作者/读者索取更多资源

Titanium oxide is a ubiquitous and commonly used material in the environment. Herein, we have systematically probed the use of various hydrothermally derived titania (TiO2) architectures including zero-dimensional (OD) nano particles, one-dimensional (1D) nanowires, and three-dimensional (3D) urchin-like motifs as anode materials for lithium ion batteries. The structure and morphology of these nanomaterials were characterized using electron microscopy. The surface areas of these materials were quantitatively analyzed through Brunauer-Emmett-Teller (BET) adsorption measurements and were found to be relatively similar for both 1D and 3D samples with a slightly higher surface area associated with the OD nanoparticles. Hence, to normalize for the surface area effect, readily available OD commercial nanoparticles (Degussa P25), which possessed a similar surface area to that of as-prepared 1D and 3D materials, were also analyzed. Electrochemical analysis revealed a superior performance of hydrothermally derived 3D urchin-like motifs as compared with both as-prepared OD and 1D samples as well as commercial Degussa P25. Our studies suggest the greater overall importance of morphology as opposed to surface area in dictating the efficiency of the Li ion diffusion process. Specifically, the 3D urchins yielded consistent rate capabilities, delivering 214, 167, 120, 99, and 52 mAh/g under corresponding discharge rates of 0.1, 1, 10, 20, and 50 C, respectively. Moreover, these 3D motifs gave rise to a stable cycling performance, exhibiting a capacity retention of similar to 90% in cycles 1-100 under a discharge rate of 1 C. Furthermore, the rate capability and cycling performance of our 3D hierarchical motifs were (0 comparable to those of anatase TiO2/TiO2-(B) hybrid structures even with little if any electrochemically promising bronze (B) phase herein and (ii) clearly enhanced as compared with previous results using similar anatase 3D microspheres.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据