4.7 Article

Photon-Mediated Interactions: A Scalable Tool to Create and Sustain Entangled States of N Atoms

期刊

PHYSICAL REVIEW X
卷 6, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.6.011032

关键词

-

资金

  1. ARO [W911NF-15-1-0299]
  2. NSF [DMR-1151810]
  3. City University of New York Award [68193-0046]
  4. Division Of Materials Research
  5. Direct For Mathematical & Physical Scien [1151810] Funding Source: National Science Foundation

向作者/读者索取更多资源

We propose and study the use of photon-mediated interactions for the generation of long-range steady-state entanglement between N atoms. Through the judicious use of coherent drives and the placement of the atoms in a network of cavity QED systems, a balance between their unitary and dissipative dynamics can be precisely engineered to stabilize a long-range correlated state of qubits in the steady state. We discuss the general theory behind such a scheme and present an example of how it can be used to drive a register of N atoms to a generalized W state and how the entanglement can be sustained indefinitely. The achievable steady-state fidelities for entanglement and its scaling with the number of qubits are discussed for presently existing superconducting quantum circuits. While the protocol is primarily discussed for a superconducting circuit architecture, it is ideally realized in any cavity QED platform that permits controllable delivery of coherent electromagnetic radiation to specified locations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据