4.1 Article

Injection of insect membrane in Xenopus oocyte: An original method for the pharmacological characterization of neonicotinoid insecticides

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.vascn.2015.09.004

关键词

Insect membrane; Microtransplantation method; Neonicotinoid insecticides; Nicotinic acetylcholine receptors; Voltage-clamp; Xenopus oocyte

资金

  1. Department Sante des Plantes et Environnement (SPE) of the French Institute for Agricultural Research (INRA)
  2. MSc fellowship from INRA [AAP SPE 2013]

向作者/读者索取更多资源

Introduction: Insect nicotinic acetylcholine receptors (nAChRs) represent a major target of insecticides, belonging to the neonicotinoid family. However, the pharmacological profile of native nAChRs is poorly documented, mainly because of a lack of knowledge of their subunit stoichiometry, their tissue distribution and the weak access to nAChR-expressing cells. In addition, the expression of insect nAChRs in heterologous systems remains hard to achieve. Therefore, the structure-activity characterization of nAChR-targeting insecticides is made difficult. The objective of the present study was to characterize insect nAChRs by an electrophysiological approach in a heterologous system naturally devoid of these receptors to allow a molecular/cellular investigation of the mode of action of neonicotinoids. Methods: To overcome impediments linked to the expression of insect nAChR mRNA or cDNA, we chose to inject insect membranes from the pea aphid (Acyrthosiphon pisum) into Xenopus oocytes. This microtransplantation technique was designed to gain access to native nAChRs embedded in their membrane, through direct stimulation with nicotinic agonists. Results: We provide evidence that an enriched-nAChR membrane allows us to characterize native receptors. The presence of such receptors was confirmed with fluorescent alpha-BgTX labeling. Electrophysiological recordings of nicotine-induced inward currents allowed us to challenge the presence of functional nAChR. We compared the effect of nicotine (NIC) with clothianidin (CLO) and we assessed the effect of thiamethoxam (TMX). Discussion: This technique has been recently highlighted with mammalian and human material as a powerful functional approach, but has, to our knowledge, never been used with insect membrane. In addition, the use of the insect membrane microtransplantation opens a new and original way for pharmacological screening of neurotoxic insecticides, including neonicotinoids. Moreover, it might also be a powerful tool to investigate the pharmacological properties of insect nAChR. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据