4.6 Article

Denitrification, leaching, and river nitrogen export in the Community Earth System Model

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2015MS000573

关键词

river N export; community land model; nitrogen cycle; community earth system model

资金

  1. NSF ETBC award [1021070]
  2. National Science Foundation (NSF)
  3. Directorate For Geosciences
  4. Div Atmospheric & Geospace Sciences [1021613] Funding Source: National Science Foundation

向作者/读者索取更多资源

River nitrogen export is simulated within the Community Earth System Model (CESM) by coupling nitrogen leaching and runoff fluxes from the Community Land Model (CLM) to the River Transport Model (RTM). The coupled CLM-RTM prognostically simulates the downstream impact of human N cycle perturbation on coastal areas. It also provides a framework for estimating denitrification fluxes of N-2 and associated trace gases like N2O in soils and river sediments. An important limitation of the current model is that it only simulates dissolved inorganic nitrogen (DIN) river export, due to the lack of dissolved organic nitrogen (DON) and particulate nitrogen (PN) leaching fluxes in CLM. In addition, the partitioning of soil N loss in CLM between the primary loss pathways of denitrification and N leaching/runoff appears heavily skewed toward denitrification compared to other literature estimates, especially in nonagricultural regions, and also varies considerably among the four model configurations presented here. River N export is generally well predicted in the model configurations that include midlatitude crops, but tends to be underpredicted in rivers that are less perturbed by human agriculture. This is especially true in the tropics, where CLM likely underestimates leaching and runoff of all forms of nitrogen. River export of DIN is overpredicted in some relatively unperturbed Arctic rivers, which may result from excessive N inputs to those regions in CLM. Better representation of N loss in CLM can improve confidence in model results with respect to the core model objective of simulating nitrogen limitation of the carbon cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据