4.2 Article

A low-energy chilled ammonia process exploiting controlled solid formation for post-combustion CO2 capture

期刊

FARADAY DISCUSSIONS
卷 192, 期 -, 页码 59-83

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6fd00044d

关键词

-

向作者/读者索取更多资源

A new ammonia-based process for CO2 capture from flue gas has been developed, which utilizes the formation of solid ammonium bicarbonate to increase the CO2 concentration in the regeneration section of the process. Precipitation, separation, and dissolution of the solid phase are realized in a dedicated process section, while the packed absorption and desorption columns remain free of solids. Additionally, the CO2 wash section applies solid formation to enable a reduction of the wash water consumption. A rigorous performance assessment employing the SPECCA index ( Specific Primary Energy Consumption for CO2 Avoided) has been implemented to allow for a comparison of the overall energy penalty between the new process and a standard ammonia-based capture process without solid formation. A thorough understanding of the relevant solid-solid-liquid-vapor phase equilibria and an accurate modeling of them have enabled the synthesis of the process, and have inspired the development of the optimization algorithm used to screen a wide range of operating conditions in equilibrium-based process simulations. Under the assumptions on which the analysis is based, the new process with controlled solid formation achieved a SPECCA of 2.43 MJ kg(CO2)(-1), corresponding to a reduction of 17% compared to the process without solid formation ( with a SPECCA of 2.93 MJ kgCO(2)(-1)). Ways forward to confirm this significant improvement, and to increase the accuracy of the optimization are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据