4.3 Article

Metastatic model of HPV plus oropharyngeal squamous cell carcinoma demonstrates heterogeneity in tumor metastasis

期刊

ONCOTARGET
卷 7, 期 17, 页码 24194-24207

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.8254

关键词

head and neck oral cancer; human papillomavirus; metastasis; recurrence

资金

  1. Molecular Pathology Core (NIH CoBRE grant) [P20GM103548-02]
  2. Sanford Research
  3. Imaging Core (NIH CoBRE grant) [5P20GM103620]
  4. NIH [K08CA149078, 1R01CA193522, 5P20GM103548]

向作者/读者索取更多资源

Human papillomavirus induced (HPV+) cancer incidence is rapidly rising, comprising 60-80% of oropharyngeal squamous cell carcinomas (OPSCCs); while rare, recurrent/metastatic disease accounts for nearly all related deaths. An in vivo pre-clinical model for these invasive cancers is necessary for testing new therapies. We characterize an immune competent recurrent/metastatic HPV+ murine model of OPSSC which consists of four lung metastatic (MLM) cell lines isolated from an animal with HPV+ OPSCC that failed cisplatin/radiation treatment. These individual metastatic clonal cell lines were tested to verify their origin (parental transgene expression and define their physiological properties: proliferation, metastatic potential, heterogeneity and sensitivity/resistance to cisplatin and radiation. All MLMs retain expression of parental HPV16 E6 and E7 and degrade P53 yet are heterogeneous from one another and from the parental cell line as defined by Illumina expression microarray. Consistent with this, reverse phase protein array defines differences in protein expression/activation between MLMs as well as the parental line. While in vitro growth rates of MLMs are slower than the parental line, in vivo growth of MLM clones is greatly enhanced. Moreover, in vivo resistance to standard therapies is dramatically increased in 3 of the 4 MLMs. Lymphatic and/or lung metastasis occurs 100% of the time in one MLM line. This recurrent/metastatic model of HPV+ OPSCC retains the characteristics evident in refractory human disease (heterogeneity, resistance to therapy, metastasis in lymph nodes/lungs) thus serving as an ideal translational system to test novel therapeutics. Moreover, this system may provide insights into the molecular mechanisms of metastasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据