4.0 Article

Nitrogen Doped Graphene Generated by Microwave Plasma and Reduction Expansion Synthesis

期刊

NANOSCIENCE AND NANOTECHNOLOGY LETTERS
卷 8, 期 2, 页码 120-128

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/nnl.2016.2055

关键词

Doped Graphene; Reduction Expansion Synthesis (RES); Microwave Plasma

向作者/读者索取更多资源

This work aimed to produce nitrogen doped graphene from Graphite Oxide (GO) by combining the Expansion Reduction Synthesis (RES) approach, which utilizes urea as doping/reducing agent, with the use of an Atmospheric Plasma torch (Plasma), which provides the high temperature reactor environment known to thermally exfoliate it. The use of this combined strategy (Plasma-RES) was tried in an attempt to increase the surface area of the products. The amount of nitrogen doping was controlled by varying the urea/GO mass ratios in the precursor powders. X-ray diffraction analysis, SEM, TEM, BET surface areas and conductivity measurements of the diverse products are presented. Nitrogen inclusion in the graphene samples was corroborated by the mass spectral signal of the evolved gases generated during thermal programmed oxidation experiments of the products and by EDX analysis. We found that the Plasma-RES method can successfully generate doped graphene in situ as the urea and GO precursors simultaneously decompose and reduce in the discharge zone. When using the same amount of urea in the precursor mixture, samples obtained in Plasma-RES have higher surface area than those generated by RES, however they contain a smaller nitrogen content.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据