4.6 Article

An Effective Electrodeposition Mode for Porous MnO2/Ni Foam Composite for Asymmetric Supercapacitors

期刊

MATERIALS
卷 9, 期 4, 页码 -

出版社

MDPI AG
DOI: 10.3390/ma9040246

关键词

electrodeposition; MnO2; Ni foam; asymmetric supercapacitor

资金

  1. Ministry of Science and Technology, Taiwan [MOST 104-2622-E-168-004-CC3]

向作者/读者索取更多资源

Three kinds of MnO2/Ni foam composite electrode with hierarchical meso-macroporous structures were prepared using potentiodynamic (PD), potentiostatic (PS), and a combination of PS and PD(PS + PD) modes of electrodeposition. The electrodeposition mode markedly influenced the surface morphological, textural, and supercapacitive properties of the MnO2/Ni electrodes. The supercapacitive performance of the MnO2/Ni electrode obtained via PS + PD(PS + PD(MnO2/Ni)) was found to be superior to those of MnO2/Ni electrodes obtained via PD and PS, respectively. Moreover, an asymmetric supercapacitor device, activated carbon (AC)/PS + PD(MnO2/Ni), utilizing PS + PD(MnO2/Ni) as a positive electrode and AC as a negative electrode, was fabricated. The device exhibited an energy density of 7.7 Wh.kg(-1) at a power density of 600 W.kg(-1) and superior cycling stability, retaining 98% of its initial capacity after 10,000 cycles. The good supercapacitive performance and excellent stability of the AC/PS + PD(MnO2/Ni) device can be ascribed to its high surface area, hierarchical structure, and interconnected three-dimensional reticular configuration of the nickel metal support, which facilitates electrolyte ion intercalation and deintercalation at the electrode/electrolyte interface and mitigates volume change during repeated charge/discharge cycling. These results demonstrate the great potential of the combination of PS and PD modes for MnO2 electrodeposition for the development of high-performance electrodes for supercapacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据