4.5 Article

Comparing the Markov Chain Model with the Eulerian and Lagrangian Models for Indoor Transient Particle Transport Simulations

期刊

AEROSOL SCIENCE AND TECHNOLOGY
卷 49, 期 10, 页码 857-871

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/02786826.2015.1079587

关键词

-

资金

  1. National Basic Research Program of China (the 973 Program) through Ministry of Science and Technology of China [2012CB720100]

向作者/读者索取更多资源

Correctly predicting transient particle transport in indoor environments is crucial to improving the design of ventilation systems and reducing the risk of acquiring airborne infectious diseases. Recently, a new model was developed on the basis of Markov chain frame for quickly predicting transient particle transport indoors. To evaluate this Markov chain model, this study compared it with the traditional Eulerian and Lagrangian models in terms of performance, computing cost, and robustness. Four cases of particle transport, three of which included experimental data, were used for this comparison. The Markov chain model was able to predict transient particle transport indoors with similar accuracy to the Eulerian and Lagrangian models. Furthermore, when the same time step size (Courant number <= 1) and grid number were used for all three models, the Markov chain model had the highest calculation speed. The Eulerian model was faster than the Lagrangian model unless a super-fine grid was used. This investigation developed empirical equations for evaluating the three models in terms of computing cost. In addition, the Markov chain model was found to be sensitive to the time step size when the Courant number is larger than 1, whereas the Eulerian and Lagrangian models were not.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据