4.8 Article

Tailoring High-Performance Pd Catalysts for Chemoselective Hydrogenation Reactions via Optimizing the Parameters of the Double-Flame Spray Pyrolysis

期刊

ACS CATALYSIS
卷 6, 期 4, 页码 2372-2381

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.6b00396

关键词

palladium catalysts; silica/alumina supports; double-flame spray pyrolysis; structure-activity correlation; chemoselective hydrogenation

资金

  1. Australian Research Council Discovery Projects [DP150103842]
  2. International Project Development Funding
  3. Faculty's MCR scheme at the University of Sydney
  4. Deutsche Forschungsgemeinschaft [INST 41/879-1 FUGG]
  5. Deutsch Forschungsgemeinschaft (DFG) [SPP 1613, MA 3333/6-1]
  6. Priority Program Partikel im Kontakt -Mikromechanik, Mikroprozess-dynamik and Partikelkollektiv [SPP 1486, MA 3333/3]

向作者/读者索取更多资源

Tuning the chemical composition during the synthesis is a widely used method to control the activity of catalysts. Here, we reported an alternative synthesis strategy to tune the catalytic properties of nanocatalysts without changing their precursors and compositions. We synthesized a series of Pd catalysts on the most popular SiO2-, Al2O3-, and silica alumina supports using the double-flame spray pyrolysis (FSP) technique. It was observed that various flow rates used for the synthesis of catalysts with the same composition affected the formation of the catalyst particles and their structures to further tune the surface acidity due to the correlation between acidity and structure, but the flow rates did not influence the electronic properties of Pd particles. It was observed that surface OH groups could associate Pd for the hydrogenation, but Lewis acid sites could not, as Pd/SA-30 and Pd/SiO2 showed much higher activity than Pd/Al2O3 for the same Pd size and surface properties. For Pd catalysts with Bronsted acid sites (silica alumina) or weak/nonacidic SiOH groups (SiO2), their catalytic performance for the chemoselective hydrogenation of acetophenone was obviously enhanced by tuning the surface OH groups via changing the flow rates for the same precursor solution during this ultrafast synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据