4.2 Article Proceedings Paper

Mutations in the BCR-ABL1 Kinase Domain and Elsewhere in Chronic Myeloid Leukemia

期刊

CLINICAL LYMPHOMA MYELOMA & LEUKEMIA
卷 15, 期 -, 页码 S120-S128

出版社

CIG MEDIA GROUP, LP
DOI: 10.1016/j.clml.2015.02.035

关键词

BCR-ABL1 mutations; Dasatinib; Imatinib; Nilotinib; Tyrosine kinase inhibitor

向作者/读者索取更多资源

Chronic myeloid leukemia (CML) has been the first human malignancy to be associated, more than 50 years ago, with a consistent chromosomal abnormality-the t(9;22)(q34;q11) chromosomal translocation. The resulting BCR-ABL1 fusion gene, encoding a tyrosine kinase with deregulated activity, has a central role in the pathogenesis of CML. Ancestral or additional genetic events necessary for CML to develop have long been hypothesized but never really demonstrated. CML can successfully be treated with tyrosine kinase inhibitors (TKIs). Mutations in the BCR-ABL1 kinase domain might arise, however, that confer resistance to 1 or more of the currently available TKIs. Hence, the critical role of BCR-ABL1 mutation screening for optimal therapeutic management, with the current gold standard technique, conventional sequencing, likely to be replaced soon by ultra-deep sequencing. Mutations in genes other than BCR-ABL1 include ASXL1, TET2, RUNX1, DNMT3A, EZH2, and TP53 in chronic phase patients and RUNX1, ASXL1, IKZF1, WT1, TET2, NPM1, IDH1, IDH2, NRAS, KRAS, CBL, TP53, CDKN2A, RB1, and GATA-2 mutations in advanced phase patients. The latter also display additional cytogenetic abnormalities, including submicroscopic regions of gain or loss that only single nucleotide polymorphism arrays or array comparative genomic hybridization can detect. Whether whole genome/exome sequencing studies will uncover novel mutations relevant for pathogenesis, progression, and risk-adapted therapy is still unclear. (C) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据