4.6 Review

Galectin-3 and IL-33/ST2 axis roles and interplay in diet-induced steatohepatitis

期刊

WORLD JOURNAL OF GASTROENTEROLOGY
卷 22, 期 44, 页码 9706-9717

出版社

BAISHIDENG PUBLISHING GROUP INC
DOI: 10.3748/wjg.v22.i44.9706

关键词

Galectin-3; Liver fibrosis; Interleukin-33; ST2; Nonalcoholic steatohepatitis

资金

  1. Swiss Science Foundation [IZ73Z0_152407]
  2. Swiss National Science Foundation (SNF) [IZ73Z0_152407] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Immune reactivity and chronic low-grade inflammation (metaflammation) play an important role in the pathogenesis of obesity-associated metabolic disorders, including type 2 diabetes and nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases that include liver steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Increased adiposity and insulin resistance contribute to the progression from hepatic steatosis to NASH and fibrosis through the development of proinflammatory and profibrotic processes in the liver, including increased hepatic infiltration of innate and adaptive immune cells, altered balance of cytokines and chemokines, increased reactive oxygen species generation and hepatocellular death. Experimental models of dietary-induced NAFLD/ NASH in mice on different genetic backgrounds or knockout mice with different immune reactivity are used for elucidating the pathogenesis of NASH and liver fibrosis. Galectin-3 (Gal-3), a unique chimera-type a-galactoside-binding protein of the galectin family has a regulatory role in immunometabolism and fibrogenesis. Mice deficient in Gal-3 develop pronounced adiposity, hyperglycemia and hepatic steatosis, as well as attenuated liver inflammation and fibrosis when fed an obesogenic high-fat diet. Interleukin (IL)-33, a member of the IL-1 cytokine family, mediates its effects through the ST receptor, which is present on immune and nonimmune cells and participates in immunometabolic and fibrotic disorders. Recent evidence, including our own data, suggests a protective role for the IL-33/IL33R (ST2) signaling pathway in obesity, adipose tissue inflammation and atherosclerosis, but a profibrotic role in NASH development. The link between Gal-3 and soluble ST2 in myocardial fibrosis and heart failure progression has been demonstrated and we have recently shown that Gal-3 and the IL-33/ST2 pathway interact and both have a profibrotic role in diet-induced NASH. This review discusses the current evidence on the roles of Gal-3 and the IL-33/ST2 pathway and their interplay in obesity-associated hepatic inflammation and fibrogenesis that may be of interest in the development of therapeutic interventions to prevent and/or reverse obesity-associated hepatic inflammation and fibrosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据