4.5 Review

Detection and treatment of atherosclerosis using nanoparticles

出版社

WILEY
DOI: 10.1002/wnan.1412

关键词

-

资金

  1. National Center for Complementary and Integrative Health [R15AT007013, 1R15AT008733-01]
  2. Burleson's Family Foundation
  3. College of Human Sciences at Texas Tech University, Lubbock, TX

向作者/读者索取更多资源

Atherosclerosis is the key pathogenesis of cardiovascular disease, which is a silent killer and a leading cause of death in the United States. Atherosclerosis starts with the adhesion of inflammatory monocytes on the activated endothelial cells in response to inflammatory stimuli. These monocytes can further migrate into the intimal layer of the blood vessel where they differentiate into macrophages, which take up oxidized low-density lipoproteins and release inflammatory factors to amplify the local inflammatory response. After accumulation of cholesterol, the lipid-laden macrophages are transformed into foam cells, the hallmark of the early stage of atherosclerosis. Foam cells can die from apoptosis or necrosis, and the intracellular lipid is deposed in the artery wall forming lesions. The angiogenesis for nurturing cells is enhanced during lesion development. Proteases released from macrophages, foam cells, and other cells degrade the fibrous cap of the lesion, resulting in rupture of the lesion and subsequent thrombus formation. Thrombi can block blood circulation, which represents a major cause of acute heart events and stroke. There are generally no symptoms in the early stages of atherosclerosis. Current detection techniques cannot easily, safely, and effectively detect the lesions in the early stages, nor can they characterize the lesion features such as the vulnerability. While the available therapeutic modalities cannot target specific molecules, cells, and processes in the lesions, nanoparticles appear to have a promising potential in improving atherosclerosis detection and treatment via targeting the intimal macrophages, foam cells, endothelial cells, angiogenesis, proteolysis, apoptosis, and thrombosis. Indeed, many nanoparticles have been developed in improving blood lipid profile and decreasing inflammatory response for enhancing therapeutic efficacy of drugs and decreasing their side effects. WIREs Nanomed Nanobiotechnol 2017, 9:e1412. doi: 10.1002/wnan.1412 For further resources related to this article, please visit the .

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据