4.3 Article

Effects of Salinity and Inundation on Microbial Community Structure and Function in a Mangrove Peat Soil

期刊

WETLANDS
卷 36, 期 2, 页码 361-371

出版社

SPRINGER
DOI: 10.1007/s13157-016-0745-8

关键词

Coastal wetland; Peat; Sea level rise; Salinity; Mangrove

资金

  1. National Science Foundation [DEB-1237517, DBI-0620409]
  2. Everglades Foundation
  3. Division Of Environmental Biology
  4. Direct For Biological Sciences [1237517] Funding Source: National Science Foundation

向作者/读者索取更多资源

Shifts in microbial community function and structure can be indicators of environmental stress and ecosystem change in wetland soils. This study evaluated the effects of increased salinity, increased inundation, and their combination, on soil microbial function (enzyme activity) and structure (phospholipid fatty acid (PLFA) signatures and terminal restriction fragment length polymorphisms (T-RFLP) profiles) in a brackish mangrove peat soil using tidal mesocosms (Everglades, Florida, USA). Increased tidal inundation resulted in reduced soil enzyme activity, especially alkaline phosphatase, an increase in the abundance and diversity of prokaryotes, and a decline in number of eukaryotes. The community composition of less abundant bacteria (T-RFLPs comprising 0.3-1 % of total fluorescence) also shifted as a result of increased inundation under ambient salinity. Several key biogeochemical indicators (oxidation-reduction potential, CO2 flux, porewater NH4 (+), and dissolved organic carbon) correlated with measured microbial parameters and differed with inundation level. This study indicates microbial function and composition in brackish soil is more strongly impacted by increased inundation than increased salinity. The observed divergence of microbial indicators within a short time span (10-weeks) demonstrates their usefulness as an early warning signal for shifts in coastal wetland ecosystems due to sea level rise stressors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据