4.8 Article

Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water

期刊

WATER RESEARCH
卷 96, 期 -, 页码 126-135

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2016.03.055

关键词

Starch-based flocculants; Chain architectures and charge properties of flocculants; Humic acid; Flocculation performance; Flocculation mechanism

资金

  1. Natural Science Foundation of China [51438008, 51378250]
  2. Six Talent Peaks Project in Jiangsu Province of China [2015-JNHB-003]

向作者/读者索取更多资源

Three different starch-based flocculants with various chain architectures and charge properties have been prepared through etherification, graft copolymerization, or their combination. Two of the flocculants (starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride] and starch-3-chloro-2-hydroxypropyl triethyl ammonium chloride, denoted as STC-g-PDMC and STC-CTA respectively) are cationic, and another one (carboxymethyl starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride], denoted as CMS-g-PDMC) is amphoteric. Those three flocculants have shown far different flocculation efficiency and floc properties for the removal of humic acid (HA) from water due to their distinct structural features. The effects of pH, flocculant dose, and initial HA concentration have been studied systematically. Accordingly, STC-g-PDMC and CMS-g-PDMC with strongly cationic branch chains have much better flocculation performance than polyaluminum chloride (PAC) and STC-CTA, the latter of which features linear chain architecture and strongly cationic pieces lying on its chain backbone. It indicates that the architecture of cationic branch chains plays an important role in HA flocculation due to their significantly enhanced bridging effects. Moreover, STC-g-PDMC has higher HA removal efficiency and better floc properties than CMS-g-PDMC, suggesting that charge neutralization effects make notable contributions to HA removal and that the additional anionic pieces on CMS-g-PDMC can weaken its flocculation performance. In addition, STC-g-PDMC used as coagulant aid for PAC has also been tried, which observably reduces the optimal dose of the inorganic coagulant. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据