4.1 Article

Long noncoding RNA expression profile of infantile hemangioma identified by microarray analysis

期刊

TUMOR BIOLOGY
卷 37, 期 12, 页码 15977-15987

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1007/s13277-016-5434-y

关键词

Long noncoding RNA; MALAT1; Infantile hemangioma; Angiogenesis; Microarrays

类别

资金

  1. National Natural Science Foundation of China [81171828]

向作者/读者索取更多资源

Infantile hemangioma (IH) is one of the most common vascular tumors of childhood. Long noncoding RNAs (lncRNAs) play a critical role in angiogenesis, but their involvement in hemangioma remains unknown. This study aimed to assess the expression profiles of lncRNAs in IH and adjacent normal tissue samples, exploring the biological functions of lncRNAs as well as their involvement in IH pathogenesis. The lncRNA expression profiles were determined by lncRNA microarrays. A total of 1259 and 857 lncRNAs were upregulated and downregulated in IH, respectively, at a fold change cutoff of 2.0 (p < 0.05); in addition, 1469 and 1184 messenger RNAs (mRNAs) were upregulated and downregulated, respectively (fold change cutoff of 2.0; p < 0.05). A total of 292 differentially expressed mRNAs were targeted by the lncRNAs with altered expression in hemangioma, including 228 and 64 upregulated and downregulated, respectively (cutoff of 2.0, p < 0.05). Gene ontology (GO) analyses revealed several angiogenesis-related pathways. An lncRNA-mRNA co-expression network for differentially expressed lncRNAs revealed significant associations of the lncRNAs MEG3, MEG8, FENDRR, and Linc00152 with their related mRNAs. The validation results of nine differentially expressed lncRNAs (MALAT1, MEG3, MEG8, p29066, p33867, FENDRR, Linc00152, p44557_v4, p8683) as well as two mRNAs (FOXF1, EGFL7) indicated that the microarray data correlated well with the QPCR results. Interestingly, MALAT1 knockdown induced apoptosis and S-phase cell cycle arrest in human umbilical vein endothelial cells (HUVECs). Overall, this study revealed the lncRNA expression profile of IH and that lncRNAs likely regulate several genes with important roles in angiogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据