4.7 Review

Carbon nanotools as sorbents and sensors of nanosized objects: The third way of analytical nanoscience and nanotechnology

期刊

TRAC-TRENDS IN ANALYTICAL CHEMISTRY
卷 84, 期 -, 页码 172-180

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.trac.2016.02.016

关键词

Carbon nanomaterials; Nanoanalyte; Nanotools; Sorbents; Sensors; Third way of analytical nanoscience and nanotechnology

资金

  1. Spanish Ministry of Innovation and Science [CTQ2014-52939R]

向作者/读者索取更多资源

This review describes the current state and the challenges of Analytical Nanoscience and Nanotechnology (AN&N) regarding the use of carbon nanomaterials as nanotools for nanoparticle characterization and determination, which is included in the Third Way of AN&N. Therein, this review article attempts to provide a systematic comparison of the recent analytical methodologies involving carbon nanoparticles as analytical tools in this context, which focuses, on the one hand, on the preconcentration and capture of nanoanalytes and, on the other hand, on the sensing and detection of other nanoparticles. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Biochemical Research Methods

Graphene quantum dots for enhancement of fluorimetric detection coupled to capillary electrophoresis for detection of ofloxacin

Samah Lahouidak, M. Laura Soriano, Rachid Salghi, Mohammed Zougagh, Angel Rios

ELECTROPHORESIS (2019)

Review Chemistry, Analytical

Analytical reliability of simple, rapid, minuturizated, direct analytical processes: A call to arms

Maria Laura Soriano, Mohammed Zougagh, Angel Rios, Miguel Valcarcel

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2019)

Article Biochemical Research Methods

Ionic-liquid-based microextraction method for the determination of silver nanoparticles in consumer products

M. Laura Soriano, Celia Ruiz-Palomero, Miguel Valcarcel

ANALYTICAL AND BIOANALYTICAL CHEMISTRY (2019)

Article Chemistry, Analytical

Carbon-based nanodots as effective electrochemical sensing tools toward the simultaneous detection of bioactive compounds in complex matrices

Cristina Montes, M. Laura Soriano, M. Jesus Villasenor, Angel Rios

JOURNAL OF ELECTROANALYTICAL CHEMISTRY (2020)

Article Chemistry, Analytical

Discrimination between nanocurcumin and free curcumin using graphene quantum dots as a selective fluorescence probe

Esther Pinilla-Penalver, M. Laura Soriano, Gema M. Duran, Eulogio J. Llorent-Martinez, Ana M. Contento, Angel Rios

MICROCHIMICA ACTA (2020)

Article Chemistry, Multidisciplinary

A Systematic Comparative Study of the Toxicity of Semiconductor and Graphitic Carbon-Based Quantum Dots Using In Vitro Cell Models

Maria Carmen Navarro-Ruiz, Angelina Cayuela, Maria Laura Soriano, Rocio Guzman-Ruiz, Maria M. Malagon, Miguel Valcarcel

APPLIED SCIENCES-BASEL (2020)

Article Chemistry, Analytical

Passivated graphene quantum dots for carbaryl determination in juices

M. Laura Soriano, Andres Jimenez-Sanchez, Soledad Cardenas

Summary: This paper presents a simple method for the preparation of graphene quantum dots suitable for the determination of carbaryl in juice samples. The study compares synthetic conditions for the preparation of graphene quantum dots and evaluates the passivation effect on their performance. The results demonstrate the potential application of surface-passivated graphene quantum dots in the detection of carbaryl.

JOURNAL OF SEPARATION SCIENCE (2021)

Article Chemistry, Multidisciplinary

A Comparative Study of Top-Down and Bottom-Up Carbon Nanodots and Their Interaction with Mercury Ions

Federico Bruno, Alice Sciortino, Gianpiero Buscarino, Maria Laura Soriano, Angel Rios, Marco Cannas, Franco Gelardi, Fabrizio Messina, Simonpietro Agnello

Summary: This study investigates carbon dots produced via bottom-up and top-down routes using multiple techniques, comparing their structural and optical properties and interaction with mercury ions. Key structural and optical properties common to all types of carbon dots were identified, along with critical differences in optical response and microscopic mechanisms responsible for fluorescence. The study also suggests likely interaction sites of mercury ions on carbon dots and reveals details on mercury-induced fluorescence quenching for optimizing sensing applications.

NANOMATERIALS (2021)

Article Chemistry, Analytical

Cyclodextrin-modified graphene quantum dots as a novel additive for the selective separation of bioactive compounds by capillary electrophoresis

Esther Pinilla-Penalver, M. Laura Soriano, Ana M. Contento, Angel Rios

Summary: Efficient separation and determination of various biologically active compounds were achieved using capillary electrophoresis based on beta-cyclodextrin-functionalized graphene quantum dots as the background electrolyte additive. The method demonstrated high precision and baseline separation within a short period of time, with low detection limits for all compounds and good resolution of peaks. The use of this dual approach (macromolecules and nanotechnology) provides a promising technique for routine analyses of food and natural products.

MICROCHIMICA ACTA (2021)

Article Chemistry, Analytical

Design of a 3D interfacial SERS liquid sensing platform based on Au-nanobones for discrimination and quantitation of quercetin loaded nanoemulsions

Cristina Montes, M. Laura Soriano, M. Jesus Villasenor, Angel Rios

Summary: This study focuses on the characterization and discrimination between free quercetin and quercetin-loaded nanoemulsions (Q-NEs), and the design of a plasmonic metal liquid platform for their quantification. Reproducible synthesis of Q-NEs was achieved using Generally Recognized as Safe (GRAS) components and a low-energy method. The developed plasmonic sensing platform based on tuned gold nanorods-bone shaped structure allowed for the quantification of Q-NEs without altering their native nanostructure. The platform showed good analytical performance characteristics and was validated against commercial nutritional supplements.

SENSORS AND ACTUATORS B-CHEMICAL (2022)

Article Engineering, Environmental

Heracleum Persicum based biosorbent for the removal of paraquat and diquat from waters

Nasrin Mehmandost, Maria Teresa Garcia-Valverde, M. Laura Soriano, Nasser Goudarzi, Rafael Lucena, Mansour Arab Chamjangali, Soledad Cardenas

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2020)

Article Materials Science, Multidisciplinary

Recycling Oxacillin Residues from Environmental Waste into Graphene Quantum Dots

Maria Laura Soriano, Soledad Cardenas

C-JOURNAL OF CARBON RESEARCH (2019)

Article Engineering, Environmental

Recycled polystyrene-cotton composites, giving a second life to plastic residues for environmental remediation

Nasrin Mehmandost, M. Laura Soriano, Rafael Lucena, Nasser Goudarzi, Mansour Arab Chamjangali, Soledad Cardenas

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2019)

Article Chemistry, Physical

Ultrafast spectroscopic investigation on fluorescent carbon nanodots: the role of passivation

Alice Sciortino, Michela Gazzetto, Maria Laura Soriano, Marco Cannas, Soledad Cardenas, Andrea Cannizzo, Fabrizio Messina

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2019)

Review Chemistry, Analytical

A critical review of biodegradable plastic mulch films in agriculture: Definitions, scientific background and potential impacts

Claudia Campanale, Silvia Galafassi, Francesca Di Pippo, Iulian Pojar, Carmine Massarelli, Vito Felice Uricchio

Summary: Biodegradable plastic mulches (BDMs) have the potential to be an eco-friendly alternative to conventional plastic mulches in agriculture. However, their long-term impacts on soil ecosystems are still uncertain, and further research is needed. Incorporating BDMs into the soil may stimulate microbial activity, but there is also a risk of incomplete degradation and release of residual microplastics and additives.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Performance enhancement of the lateral flow immunoassay by use of composite nanoparticles as signal labels

Xuechi Yin, Sijie Liu, Deepak Kukkar, Jianlong Wang, Daohong Zhang, Ki-Hyun Kim

Summary: The lateral flow immunoassay strip is a classic and dominant tool in point-of-care detection, known for its portability and simplicity. However, current colored nanomaterials used as signal labels in LFIA have limited sensing potential, leading to the recognition of composite nanoparticles as alternatives to enhance sensitivity, signal readout diversity, anti-matrix interference, and cost-effectiveness.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Anthropocene airborne microfibers: Physicochemical characteristics, identification methods and health impacts

Yaxin Cao, Longyi Shao, Timothy P. Jones, Wenjing Deng, M. Santosh, Pengju Liu, Cheng-Xue Yang, Yaowei Li, Daizhou Zhang, Kelly Berube

Summary: The toxicity of fibrous particles in ambient air can be higher than other types of particles. Microfibers can be organic or inorganic and their presence in the atmosphere as a result of human activity raises concerns for environmental and public health. Accurate collection, identification, and understanding of the health hazards associated with these fibers are crucial for mitigation strategies and protection of public health.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Progress in research on smartphone-assisted MIP optosensors for the on-site detection of food hazard factors

Chenchen Xie, Chen Meng, Huilin Liu, Baoguo Sun

Summary: The development of food hazard factor (FHF) detection has been moving towards on-site inspection and mobile law enforcement, calling for simple, fast, and affordable analysis technology to ensure food safety and quality. This review comprehensively summarizes the progress in research on smartphone-assisted MIP optosensors, focusing on the key issues of accuracy and sensitivity.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Miniaturization as a smart strategy to achieve greener sample preparation approaches: A view through greenness assessment

Guillem Peris-Pastor, Cristian Azorin, Jose Grau, Juan L. Benede, Alberto Chisvert

Summary: Green Analytical Chemistry plays an important role in every stage of method development, including sample preparation. Extraction techniques have evolved from conventional ones to a variety of miniaturized techniques in order to enhance analytical performance and ensure safety for operators and the environment. Green metric tools are used to evaluate the impact and sustainability of methods, with AGREEprep selected as the most suitable tool for evaluating published methods in various applications. The miniaturization of sample preparation strategies has led to the use of less and safer solvents, reduced waste generation and energy consumption, and improved portability and throughput.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Offline preparative separation methods based on electromigration: An overview and current trends

Helena Hruskova, Roman Reminek, Frantisek Foret

Summary: This review article summarizes the progress and recent studies in offline electromigration preparative techniques between 2018 and 2023. It covers various techniques including electrophoresis, free-flow electrophoresis, isoelectric focusing, and isotachophoresis, providing theoretical aspects, trends, and solutions to existing limitations in each technique.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Strategies to remove templates from molecularly imprinted polymer (MIP) for biosensors

Mayank Garg, Nicole Pamme

Summary: This review focuses on the removal strategies of templates from molecularly imprinted polymers (MIPs) used in diagnostic biosensors. Chemical-based and electrochemical-based template extraction approaches are summarized and evaluated, providing guidance for researchers in the fields of analytical chemistry, diagnostics, and materials science for the design of MIP-based sensors.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Passive breathomics for ultrasensitive characterization of acute and chronic respiratory diseases using electrochemical transduction mechanism

Ivneet Banga, Anirban Paul, Nathan Kodjo Mintah Churcher, Ruchita Mahesh Kumar, Sriram Muthukumar, Shalini Prasad

Summary: Breathomics is an emerging field that focuses on analyzing exhaled breath to diagnose and monitor respiratory diseases. Electrochemical sensors, with their high sensitivity, selectivity, and low cost, play a significant role in breathomics and can be integrated into portable devices for point-of-care diagnosis.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Elemental analysis of particulate matter by X-ray fluorescence methods: A green approach to air quality monitoring

Fabjola Bilo, Paola Cirelli, Laura Borgese

Summary: This review explores the application of X-ray fluorescence (XRF) spectrometry for elemental analysis of particulate matter (PM) in air quality monitoring. It discusses the fundamentals of XRF, experimental configurations, PM sampling devices and substrate, sample preparation strategies, qualitative and quantitative analysis, as well as the challenges faced by XRF in becoming a reliable analytical technique for PM analysis.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Advancements in overcoming challenges in dispersive liquid-liquid microextraction: An overview of advanced strategies

Hakim Faraji

Summary: The dispersive liquid-liquid microextraction (DLLME) technique is widely popular in analytical chemistry due to its high efficiency, cost-effectiveness, and simplicity. Recent advancements have addressed the limitations of DLLME, incorporating greener solvents, innovative dispersion strategies, and simplified procedures. These changes have made DLLME a more sustainable and efficient technique.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Metal organic framework-derived carbon nanomaterials and MOF hybrids for chemical sensing

Sherin F. Hammad, Inas A. Abdallah, Alaa Bedair, Reda M. Abdelhameed, Marcello Locatelli, Fotouh R. Mansour

Summary: Carbon nanomaterials (CNMs) have excellent capabilities in terms of adsorption, enhanced oxidation, and photocatalysis, attracting widespread attention in different fields. Metal-organic frameworks (MOFs) have been widely used due to their regular network structure, porous nature, and large specific surface area. However, the instability of MOFs in aqueous solutions limits their applications in chemical sensing. Recent studies have focused on increasing the stability of MOFs in water-based matrices through chemical modifications using CNMs.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Dielectric barrier discharge in mass spectrometry - An overview over plasma investigations and ion sources applications

Alexandra Pape, Oliver J. Schmitz

Summary: Low temperature plasmas based on dielectric barrier discharges have emerged as a recent development in ion source research. These ion sources are applicable to heat-sensitive analytes and can ionize a wide range of compounds. Despite intensive research on important parameters such as configuration, shape, size, and materials in the past two decades, the actual ionization mechanism for all plasma gases has not been fully elucidated. This review provides an overview of atmospheric pressure ion sources, with a focus on plasma and dielectric barrier discharge based ion sources, summarizing the reactions occurring in the plasma and discussing the applications developed by different research groups.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Recent and emerging trends of DNA/RNA hybridized COF nanoprobes for analytes detection and biomarkers imaging in clinical biomedicines

Hai Xiong, Fengli Li, Linyu Zeng, Qiyu Lei

Summary: This review provides an overview of the emerging trends in the use of functional COF nanomaterials as biosensors for DNA/RNA detection. It summarizes the construction of DNA/RNA hybridized COF nanoprobes and their potential applications in bioanalyte detection, biosensing, biomarker imaging, and clinical biomedicine.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Multiple luminescence responsive chemical sensing of lanthanide functionalized metal-organic frameworks hybrids for logic gate operation application to construct intelligent detecting platform

Bing Yan

Summary: This article summarizes the recent progress in logic gate computing and operation based on multiple luminescence response and chemical sensing for lanthanide functionalized MOF hybrid systems. The article first describes multi-color luminescence and the subsequent multiple luminescence response. The basic concept of logic gate operation and the advantages of lanthanide-based hybrid materials are then introduced. Reports on logic gate operation using pure lanthanide MOFs are provided, followed by a detailed summary of logic gate operations using lanthanide functionalized MOF hybrid materials. Additionally, the article discusses the practical luminescent detection of analytes by correlating the luminescence responsive signals and the concentration of different analytes. Finally, the article concludes with a prospect for this topic.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)

Review Chemistry, Analytical

Hydrogen-bonded organic frameworks (HOFs): Multifunctional material on analytical monitoring

Brij Mohan, Gurjaspreet Singh, Rakesh Kumar Gupta, Pawan Kumar Sharma, Alexander A. Solovev, Armando J. L. Pombeiro, Peng Ren

Summary: Porous materials, particularly hydrogen-bonded organic frameworks (HOFs), have gained significant attention due to their versatile applications and unique properties such as well-defined crystalline structure and easy regeneration processes. This article provides a comprehensive overview of HOFs, including synthesis methods, hydrogen bonding motifs, recent advancements, and potential applications, offering valuable guidance for further exploration in this dynamic field.

TRAC-TRENDS IN ANALYTICAL CHEMISTRY (2024)