4.6 Article

The German Bight: A validation of CryoSat-2 altimeter data in SAR mode

期刊

ADVANCES IN SPACE RESEARCH
卷 55, 期 11, 页码 2641-2656

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.asr.2015.02.014

关键词

SAR altimetry; In situ validation; Sea level; Significant wave height; Wind speed

资金

  1. Deutsche Forschungsgemeinschaft (DFG)
  2. ESA Climate Change Initiative (CCI)
  3. ICER
  4. Directorate For Geosciences [1342644] Funding Source: National Science Foundation

向作者/读者索取更多资源

The retrieval of the three geophysical parameters sea surface height above the reference ellipsoid (SSH), significant wave height (SWH) and wind speed at 10 m above the sea surface (U10) is the main goal of satellite altimetry and of primary importance for climate research. The Synthetic Aperture Radar (SAR) altimetry is expected to provide improved precision and along-track resolution compared to the conventional low-resolution mode (LRM) radar altimetry. CryoSat-2 enables a quantitative comparison of SAR and Pseudo-LRM (PLRM) data derived respectively from a coherent and an incoherent processing of the same SAR echoes. In this paper we perform their cross-validation and validation against in situ and model data to derive precision and accuracy at 1 Hz in open ocean, at distances larger than 10 km from the coast. The analysis is performed in the German Bight during 2011 and 2012. Both the PLRM and the SAR scheme include waveform zero-padding and identical environmental, geophysical, and atmospheric attenuation corrections. A Look Up Table is additionally used in SAR to correct for approximations of the Point Target Response (PTR) applied in the retracking procedure. The regional cross-validation analysis proves the good consistency between PLRM and SAR data, with no bias and rms differences of 3 cm, 21 cm, and 0.26 m/s for SSH, SWH, and U10, respectively. The precision of SSH and SWH is higher in SAR than in PLRM (by a factor of 2), while the precision of U10 is 1.4 times better in PLRM than in SAR. At 2 m waveheight, the SAR precision is 0.9 cm for SSH, 6.6 cm for SWH. and 5.8 cm/s for U10. The in situ analysis shows that SSH and U10 have comparable accuracy in SAR and PLRM, while SWH has a significantly higher accuracy in SAR. With a maximum distance of 20 km between altimeter and in situ data, the minimum values obtained for their rms differences are 7 cm, 14 cm, and 1.3 m/s for SAR and 6 cm, 29 cm, and 1.4 m/s for PLRM. (C) 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据