4.4 Article

Organogels as novel carriers for dermal and topical drug delivery vehicles

期刊

TETRAHEDRON
卷 72, 期 47, 页码 7517-7525

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tet.2016.10.009

关键词

Gels; LMWOGs (low molecular weight organojelators); Controlled release; Drug delivery systems; Formulation; Formulation vehicle; FTIR

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [1132142, 113Z142]
  2. Dicle University, Research and Project Coordination [13-FF-73]

向作者/读者索取更多资源

Aminoalcohol based bis-(aminoalcohol)oxalamides (BAOAs) (1,6-amino alcohol=leucinol, isoleucinol, valinol, phenyiglycinol, phenylalaninol and 2-amino-1-butanol) have been explored to develop drug depot systems and illustrated as a novel dermal and topical drug delivery vehicle for non-steroidal anti-inflammatory drug molecules. FAE's (Fatty acid ethyl and isopropyl esters) with different chain lengths, ethyl laurate, ethyl myristate, ethyl palmitate, isopropyl laurate, isopropyl myristate, isopropyl palmitate, have been chosen as they are biocompatible organic fluids used typically in cosmetic industry. Ibuprofen (Ib), acting as a model drug, was entrapped in the supramolecular organogels. The release behavior of Ib molecules in the supramolecular organogels was investigated by using UV-vis spectroscopy. The influence of the organogelator and drug concentration, pH values of the accepting media, and nature of solvent (different FAE's) on the release behavior of Ib was investigated under static conditions. The results indicated that the release rate of Ib from the supramolecular organogels was effectively retarded with an increase of the organogelator concentration. Also, the release rates of Ib increased on increasing the Ib content. Furthermore, the release behavior of Ib was found to be different at various pH values in buffers as accepting media. The study of the release kinetics indicated that the release behavior of Ib was in accord with the Higuchi equation and the diffusion-controlled mechanism involved in the Fickian model. These observations indicate that bis-(aminoalcohol)oxalamides gels may act as delivery vehicles for non-steroidal anti-inflammatory drug molecules and also show that the release profiles for such systems can be fine-tuned by the correct choice of gelator-FAE combination. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据