4.7 Article

Immunomodulatory Factors Control the Fate of Melanoma Tumor Initiating Cells

期刊

STEM CELLS
卷 34, 期 10, 页码 2449-2460

出版社

WILEY-BLACKWELL
DOI: 10.1002/stem.2413

关键词

Melanoma; Tumor-initiating cells; Microenvironment; Cytokines; Immune surveillance

资金

  1. Associazione Italiana Ricerca sul Cancro [CC IG-10615]
  2. FIRC fellowship

向作者/读者索取更多资源

Melanoma is a highly heterogeneous tumor for which recent evidence supports a model of dynamic stemness. Melanoma cells might temporally acquire tumor-initiating properties or switch from a status of tumor-initiating cells (TICs) to a more differentiated one depending on the tumor context. However, factors driving these functional changes are still unknown. We focused on the role of cyto/chemokines in shaping TICs isolated directly from tumor specimens of two melanoma patients, namely Me14346S and Me15888S. We analyzed the secretion profile of TICs and of their corresponding melanoma differentiated cells and we tested the ability of cyto/chemokines to influence TIC self-renewal and differentiation. We found that TICs, grown in vitro as melanospheres, had a complex secretory profile as compared to their differentiated counterparts. Some factors, such as CCL-2 and IL-8, also produced by adherent melanoma cells and melanocytes did not influence TIC properties. Conversely, IL-6, released by differentiated cells, reduced TIC self-renewal and induced TIC differentiation while IL-10, produced by Me15888S, strongly promoted TIC self-renewal through paracrine/autocrine actions. Complete neutralization of IL-10 activity by gene silencing and antibody-mediated blocking of the IL-10R was required to sensitize Me15888S to IL-6-induced differentiation. For the first time these results show that functional heterogeneity of melanoma could be directly influenced by inflammatory and suppressive soluble factors, with IL-6 favoring TIC differentiation, and IL-10 supporting TIC self-renewal. Thus, understanding the tumor microenvironment (TME) role in modulating melanoma TIC phenotype is fundamental to identifying novel therapeutic targets to achieve long-lasting regression of metastatic melanoma. Stem Cells2016;34:2449-2460

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据