4.5 Article

Evaluating Osseointegration Into a Deeply Porous Titanium Scaffold A Biomechanical Comparison With PEEK and Allograft

期刊

SPINE
卷 41, 期 19, 页码 E1146-E1150

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/BRS.0000000000001672

关键词

biomechanical testing; osseointegration; PEEK implant; porcine model; porous titanium scaffold

向作者/读者索取更多资源

Study Design. This was a biomechanical push-out testing study using a porcine model. Objective. The purpose was to evaluate the strength of implant-bone interface of a porous titanium scaffold by comparing it to polyetheretherketone (PEEK) and allograft. Summary of Background Data. Osseointegration is important for achieving maximal stability of spinal fusion implants and it is desirable to achieve as quickly as possible. Common PEEK interbody fusion implants appear to have limited osseointegration potential because of the formation of fibrous tissue along the implant-bone interface. Porous, three-dimensional titanium materials may be an option to enhance osseointegration. Methods. Using the skulls of two swine, in the region of the os frontale, 16 identical holes (4 mm diameter) were drilled to 10 mm depth in each skull. Porous titanium, PEEK, and allograft pins were press fit into the holes. After 5 weeks, animals were euthanized and the skull sections with the implants were cut into sections with each pin centered within a section. Push-out testing was performed using an MTS machine with a push rate of 6 mm/min. Load-deformation curves were used to compute the extrinsic material properties of the bone samples. Maximum force (N) and shear strength (MPa) were extracted from the output to record the bonding strength between the implant and surrounding bone. When calculating shear strength, maximum force was normalized by the actual implant surface area in contact with surrounding bone. Results. Mean push-out shear strength was significantly greater in the porous titanium scaffold group than in the PEEK or allograft groups (10.2 vs. 1.5 vs. 3.1 MPa, respectively; P<0.05). Conclusion. The push-out strength was significantly greater for the implants with porous titanium coating compared with the PEEK or allograft. These results suggest that the material has promise for facilitating osseointegration for implants, including interbody devices for spinal fusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据