4.6 Article

Multi-elemental surface mapping and analysis of carbonaceous shale by laser-induced breakdown spectroscopy

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.sab.2015.10.008

关键词

Laser-induced breakdown spectroscopy; Shale; Mapping; Surface analysis; Geochemical proxy

资金

  1. National Major Scientific Instruments and Equipment Development Projects of China [2011YQ030113]
  2. National Recruitment Program of Global Experts (NRPGE)
  3. Sichuan University

向作者/读者索取更多资源

Gas shale is one of the important unconventional hydrocarbon source rocks, whose composition, such as mineral components and redox sensitive trace elements, has been proved as important geochemical proxies playing essential roles in indicating the gas potential and gas productivity in recent geological researches. Fast and accurate measurements for the shale composition, especially those with spatial resolution, will reveal rich information for the understanding and evaluation of gas shale reservoirs. In this paper, we demonstrated the potentiality as well as feasibility of laser-induced breakdown spectroscopy as an effective technique to perform spectrochemical analysis for shale samples. In case of the bulk analysis of pressed shale pellet, spectral analysis of the plasma emission revealed high sensitivity of LIBS for major, minor and eventrace elements. More than 356 lines emitted by 19 different elements can be found. Among these species, redox sensitive trace elements such as V, Cr, and Ni were detected with high signal-to-ratios. Two-dimensional surface micro-analysis for the concerned major or minor elements with strong emissions was then applied to the smoothed shale slab. Local thermodynamic equilibrium for the plasma was first verified with a line profile point-by-point on the sample surface, the matrix effect was then assessed as negligible by the extracted electron density and temperature of the plasmas induced at each position on the same profile. Concentration mappings for the major elements of Si, Al, Fe, Ca, Mg, Na and K were finally constructed with their measured relative variations of line emission intensities. The distribution and correlations of these elements in concentration may reflect changes of shale mineral components with respected to the variations of the depositional environments and provide an important clue in identifying sedimentary processes when combined with other geological or geochemical evidences. These results well demonstrated the potential of LIBS technique for shale studies. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据